structure for 'Theory of Logic'    |     alphabetical list of themes    |     unexpand these ideas

5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions

[proofs which add assumptions to axioms and rules]

7 ideas
'Conditonalised' inferences point to the Deduction Theorem: If Γ,φ|-ψ then Γ|-φ→ψ [Bostock]
     Full Idea: If a group of formulae prove a conclusion, we can 'conditionalize' this into a chain of separate inferences, which leads to the Deduction Theorem (or Conditional Proof), that 'If Γ,φ|-ψ then Γ|-φ→ψ'.
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: This is the rule CP (Conditional Proof) which can be found in the rules for propositional logic I transcribed from Lemmon's book.
The Deduction Theorem greatly simplifies the search for proof [Bostock]
     Full Idea: Use of the Deduction Theorem greatly simplifies the search for proof (or more strictly, the task of showing that there is a proof).
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: See 13615 for details of the Deduction Theorem. Bostock is referring to axiomatic proof, where it can be quite hard to decide which axioms are relevant. The Deduction Theorem enables the making of assumptions.
Proof by Assumptions can always be reduced to Proof by Axioms, using the Deduction Theorem [Bostock]
     Full Idea: By repeated transformations using the Deduction Theorem, any proof from assumptions can be transformed into a fully conditionalized proof, which is then an axiomatic proof.
     From: David Bostock (Intermediate Logic [1997], 5.6)
     A reaction: Since proof using assumptions is perhaps the most standard proof system (e.g. used in Lemmon, for many years the standard book at Oxford University), the Deduction Theorem is crucial for giving it solid foundations.
The Deduction Theorem and Reductio can 'discharge' assumptions - they aren't needed for the new truth [Bostock]
     Full Idea: Like the Deduction Theorem, one form of Reductio ad Absurdum (If Γ,φ|-[absurdity] then Γ|-¬φ) 'discharges' an assumption. Assume φ and obtain a contradiction, then we know ¬&phi, without assuming φ.
     From: David Bostock (Intermediate Logic [1997], 5.7)
     A reaction: Thus proofs from assumption either arrive at conditional truths, or at truths that are true irrespective of what was initially assumed.
Proof by induction 'on the length of the formula' deconstructs a formula into its accepted atoms [Sider]
     Full Idea: The style of proof called 'induction on formula construction' (or 'on the number of connectives', or 'on the length of the formula') rest on the fact that all formulas are built up from atomic formulas according to strict rules.
     From: Theodore Sider (Logic for Philosophy [2010], 2.7)
     A reaction: Hence the proof deconstructs the formula, and takes it back to a set of atomic formulas have already been established.
Induction has a 'base case', then an 'inductive hypothesis', and then the 'inductive step' [Sider]
     Full Idea: A proof by induction starts with a 'base case', usually that an atomic formula has some property. It then assumes an 'inductive hypothesis', that the property is true up to a certain case. The 'inductive step' then says it will be true for the next case.
     From: Theodore Sider (Logic for Philosophy [2010], 2.7)
     A reaction: [compressed]
Supposing axioms (rather than accepting them) give truths, but they are conditional [Potter]
     Full Idea: A 'supposition' axiomatic theory is as concerned with truth as a 'realist' one (with undefined terms), but the truths are conditional. Satisfying the axioms is satisfying the theorem. This is if-thenism, or implicationism, or eliminative structuralism.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 01.1)
     A reaction: Aha! I had failed to make the connection between if-thenism and eliminative structuralism (of which I am rather fond). I think I am an if-thenist (not about all truth, but about provable truth).