structure for 'Mathematics'    |     alphabetical list of themes    |     unexpand these ideas

6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic

[logical operations with natural numbers]

10 ideas
If you add one to one, which one becomes two, or do they both become two? [Plato]
     Full Idea: I cannot convince myself that when you add one to one either the first or the second one becomes two, or they both become two by the addition of the one to the other, ...or that when you divide one, the cause of becoming two is now the division.
     From: Plato (Phaedo [c.382 BCE], 097d)
     A reaction: Lovely questions, all leading to the conclusion that two consists of partaking in duality, to which you can come by several different routes.
Daily arithmetic counts unequal things, but pure arithmetic equalises them [Plato]
     Full Idea: The arithmetic of the many computes sums of unequal units, such as two armies, or two herds, ..but philosopher's arithmetic computes when it is guaranteed that none of those infinitely many units differed in the least from any of the others.
     From: Plato (Philebus [c.353 BCE], 56d)
     A reaction: But of course 'the many' are ironing out the differences too, when they say there are 'three armies'. Shocking snob, Plato. Even philosophers are interested in the difference between three armies and three platoons.
7+5 = 12 is not analytic, because no analysis of 7+5 will reveal the concept of 12 [Kant]
     Full Idea: The concept of twelve is in no way already thought by merely thinking the unification of seven and five, and though I analyse my concept of such a possible sum as long as I please, I shall never find twelve in it.
     From: Immanuel Kant (Prolegomena to Any Future Metaphysic [1781], 269)
     A reaction: It might be more plausible to claim that an analysis of 12 would reveal the concept of 7+5. Doesn't the concept of two collections of objects contain the concept of their combined cardinality?
Arithmetic is just the consequence of counting, which is the successor operation [Dedekind]
     Full Idea: I regard the whole of arithmetic as a necessary, or at least natural, consequence of the simplest arithmetic act, that of counting, and counting itself is nothing else than the successive creation of the infinite series of positive integers.
     From: Richard Dedekind (Continuity and Irrational Numbers [1872], §1)
     A reaction: Thus counting roots arithmetic in the world, the successor operation is the essence of counting, and the Dedekind-Peano axioms are built around successors, and give the essence of arithmetic. Unfashionable now, but I love it. Intransitive counting?
The formal laws of arithmetic are the Commutative, the Associative and the Distributive [Russell]
     Full Idea: The usual formal laws of arithmetic are the Commutative Law [a+b=b+a and axb=bxa], the Associative Law [(a+b)+c=a+(b+c) and (axb)xc=ax(bxc)], and the Distributive Law [a(b+c)=ab+ac)].
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], IX)
The truths of arithmetic are just true equations and their universally quantified versions [Smith,P]
     Full Idea: The truths of arithmetic are just the true equations involving particular numbers, and universally quantified versions of such equations.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 27.7)
     A reaction: Must each equation be universally quantified? Why can't we just universally quantify over the whole system?
Arithmetic must allow for the possibility of only a finite total of objects [Hodes]
     Full Idea: Arithmetic should be able to face boldly the dreadful chance that in the actual world there are only finitely many objects.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.148)
     A reaction: This seems to be a basic requirement for any account of arithmetic, but it was famously a difficulty for early logicism, evaded by making the existence of an infinity of objects into an axiom of the system.
'Commutative' laws say order makes no difference; 'associative' laws say groupings make no difference [Kaplan/Kaplan]
     Full Idea: The 'commutative' laws say the order in which you add or multiply two numbers makes no difference; ...the 'associative' laws declare that regrouping couldn't change a sum or product (e.g. a+(b+c)=(a+b)+c ).
     From: R Kaplan / E Kaplan (The Art of the Infinite [2003], 2 'Tablets')
     A reaction: This seem utterly self-evident, but in more complex systems they can break down, so it is worth being conscious of them.
'Distributive' laws say if you add then multiply, or multiply then add, you get the same result [Kaplan/Kaplan]
     Full Idea: The 'distributive' law says you will get the same result if you first add two numbers, and then multiply them by a third, or first multiply each by the third and then add the results (i.e. a ˇ (b+c) = a ˇ b + a ˇ c ).
     From: R Kaplan / E Kaplan (The Art of the Infinite [2003], 2 'Tablets')
     A reaction: Obviously this will depend on getting the brackets right, to ensure you are indeed doing the same operations both ways.
The fundamental theorem of arithmetic is that all numbers are composed uniquely of primes [Hofweber]
     Full Idea: The prime numbers are more fundamental than the even numbers, and than the composite non-prime numbers. The result that all numbers uniquely decompose into a product of prime numbers is called the 'Fundamental Theorem of Arithmetic'.
     From: Thomas Hofweber (Ontology and the Ambitions of Metaphysics [2016], 13.4.2)
     A reaction: I could have used this example in my thesis, which defended the view that essences are the fundamentals of explanation, even in abstract theoretical realms.