structure for 'Mathematics'    |     alphabetical list of themes    |     expand these ideas

6. Mathematics / B. Foundations for Mathematics / 4. Definitions of Number / e. Caesar problem

[explain why Julius Caesar can't be a number]

13 ideas
'Julius Caesar' isn't a number because numbers inherit properties of 0 and successor [George/Velleman on Frege]
From within logic, how can we tell whether an arbitrary object like Julius Caesar is a number? [Friend on Frege]
Frege said 2 is the extension of all pairs (so Julius Caesar isn't 2, because he's not an extension) [Shapiro on Frege]
Fregean numbers are numbers, and not 'Caesar', because they correlate 1-1 [Wright,C on Frege]
The words 'There are exactly Julius Caesar moons of Mars' are gibberish [Rumfitt on Frege]
Our definition will not tell us whether or not Julius Caesar is a number [Frege]
Frege makes numbers sets to solve the Caesar problem, but maybe Caesar is a set! [Bostock]
One-one correlations imply normal arithmetic, but don't explain our concept of a number [Bostock]
If numbers are extensions, Frege must first solve the Caesar problem for extensions [Wright,C]
The Julius Caesar problem asks for a criterion for the concept of a 'number' [Hale/Wright]
Frege solves the Caesar problem by explicitly defining each number [Maddy]
Property extensions outstrip objects, so shortage of objects caused the Caesar problem [Shapiro]
Some suggest that the Julius Caesar problem involves category mistakes [Magidor]