Ideas of Øystein Linnebo, by Theme

[Norwegian, fl. 2006, Lecturer at Bristol University, then Birkbeck, London.]

green numbers give full details    |    back to list of philosophers    |     unexpand these ideas    |    
2. Reason / D. Definition / 12. Paraphrase
'Some critics admire only one another' cannot be paraphrased in singular first-order
     Full Idea: The Geach-Kaplan sentence 'Some critics admire only one another' provably has no singular first-order paraphrase using only its predicates.
     From: Øystein Linnebo (Plural Quantification [2008], 1)
     A reaction: There seems to be a choice of either going second-order (picking out a property), or going plural (collectively quantifying), or maybe both.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
A comprehension axiom is 'predicative' if the formula has no bound second-order variables
     Full Idea: If φ contains no bound second-order variables, the corresponding comprehension axiom is said to be 'predicative'; otherwise it is 'impredicative'.
     From: Øystein Linnebo (Plural Quantification Exposed [2003], §1)
     A reaction: ['Predicative' roughly means that a new predicate is created, and 'impredicative' means that it just uses existing predicates]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory says any formula defines a set, and coextensive sets are identical
     Full Idea: Naïve set theory is based on the principles that any formula defines a set, and that coextensive sets are identical.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 4.2)
     A reaction: The second principle is a standard axiom of ZFC. The first principle causes the trouble.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
A 'pure logic' must be ontologically innocent, universal, and without presuppositions
     Full Idea: I offer these three claims as a partial analysis of 'pure logic': ontological innocence (no new entities are introduced), universal applicability (to any realm of discourse), and cognitive primacy (no extra-logical ideas are presupposed).
     From: Øystein Linnebo (Plural Quantification Exposed [2003], §1)
A pure logic is wholly general, purely formal, and directly known
     Full Idea: The defining features of a pure logic are its absolute generality (the objects of discourse are irrelevant), and its formality (logical truths depend on form, not matter), and its cognitive primacy (no extra-logical understanding is needed to grasp it).
     From: Øystein Linnebo (Plural Quantification [2008], 3)
     A reaction: [compressed] This strikes me as very important. The above description seems to contain no ontological commitment at all, either to the existence of something, or to two things, or to numbers, or to a property. Pure logic seems to be 'if-thenism'.
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Can second-order logic be ontologically first-order, with all the benefits of second-order?
     Full Idea: According to its supporters, second-order logic allow us to pay the ontological price of a mere first-order theory and get the corresponding monadic second-order theory for free.
     From: Øystein Linnebo (Plural Quantification Exposed [2003], §0)
Plural quantification depends too heavily on combinatorial and set-theoretic considerations
     Full Idea: If my arguments are correct, the theory of plural quantification has no right to the title 'logic'. ...The impredicative plural comprehension axioms depend too heavily on combinatorial and set-theoretic considerations.
     From: Øystein Linnebo (Plural Quantification Exposed [2003], §4)
Second-order quantification and plural quantification are different
     Full Idea: Second-order quantification and plural quantification are generally regarded as different forms of quantification.
     From: Øystein Linnebo (Plural Quantification [2008], 2)
Instead of complex objects like tables, plurally quantify over mereological atoms tablewise
     Full Idea: Plural quantification can be used to eliminate the commitment of science and common sense to complex objects. We can use plural quantification over mereological atoms arranged tablewise or chairwise.
     From: Øystein Linnebo (Plural Quantification [2008], 4.5)
     A reaction: [He cites Hossack and van Ingwagen]
Traditionally we eliminate plurals by quantifying over sets
     Full Idea: The traditional view in analytic philosophy has been that all plural locutions should be paraphrased away by quantifying over sets, though Boolos and other objected that this is unnatural and unnecessary.
     From: Øystein Linnebo (Plural Quantification [2008], 5)
Plural plurals are unnatural and need a first-level ontology
     Full Idea: Higher-order plural quantification (plural plurals) is often rejected because plural quantification is supposedly ontological innocent, with no plural things to be plural, and because it is not found in ordinary English.
     From: Øystein Linnebo (Plural Quantification [2008], 2.4)
     A reaction: [Summary; he cites Boolos as a notable rejector] Linnebo observes that Icelandic contains a word 'tvennir' which means 'two pairs of'.
Plural quantification may allow a monadic second-order theory with first-order ontology
     Full Idea: Plural quantification seems to offer ontological economy. We can pay the price of a mere first-order theory and then use plural quantification to get for free the corresponding monadic second-order theory, which would be an ontological bargain.
     From: Øystein Linnebo (Plural Quantification [2008], 4.4)
     A reaction: [He mentions Hellman's modal structuralism in mathematics]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
In classical semantics singular terms refer, and quantifiers range over domains
     Full Idea: In classical semantics the function of singular terms is to refer, and that of quantifiers, to range over appropriate domains of entities.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 7.1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The axioms of group theory are not assertions, but a definition of a structure
     Full Idea: Considered in isolation, the axioms of group theory are not assertions but comprise an implicit definition of some abstract structure,
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 3.5)
     A reaction: The traditional Euclidean approach is that axioms are plausible assertions with which to start. The present idea sums up the modern approach. In the modern version you can work backwards from a structure to a set of axioms.
To investigate axiomatic theories, mathematics needs its own foundational axioms
     Full Idea: Mathematics investigates the deductive consequences of axiomatic theories, but it also needs its own foundational axioms in order to provide models for its various axiomatic theories.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 4.1)
     A reaction: This is a problem which faces the deductivist (if-then) approach. The deductive process needs its own grounds.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
You can't prove consistency using a weaker theory, but you can use a consistent theory
     Full Idea: If the 2nd Incompleteness Theorem undermines Hilbert's attempt to use a weak theory to prove the consistency of a strong one, it is still possible to prove the consistency of one theory, assuming the consistency of another theory.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 4.6)
     A reaction: Note that this concerns consistency, not completeness.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Mathematics is the study of all possible patterns, and is thus bound to describe the world
     Full Idea: Philosophical structuralism holds that mathematics is the study of abstract structures, or 'patterns'. If mathematics is the study of all possible patterns, then it is inevitable that the world is described by mathematics.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 11.1)
     A reaction: [He cites the physicist John Barrow (2010) for this] For me this is a major idea, because the concept of a pattern gives a link between the natural physical world and the abstract world of mathematics. No platonism is needed.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
'Deductivist' structuralism is just theories, with no commitment to objects, or modality
     Full Idea: The 'deductivist' version of eliminativist structuralism avoids ontological commitments to mathematical objects, and to modal vocabulary. Mathematics is formulations of various (mostly categorical) theories to describe kinds of concrete structures.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], 1)
     A reaction: 'Concrete' is ambiguous here, as mathematicians use it for the actual working maths, as opposed to the metamathematics. Presumably the structures are postulated rather than described. He cites Russell 1903 and Putnam. It is nominalist.
Non-eliminative structuralism treats mathematical objects as positions in real abstract structures
     Full Idea: The 'non-eliminative' version of mathematical structuralism takes it to be a fundamental insight that mathematical objects are really just positions in abstract mathematical structures.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], I)
     A reaction: The point here is that it is non-eliminativist because it is committed to the existence of mathematical structures. I oppose this view, since once you are committed to the structures, you may as well admit a vast implausible menagerie of abstracta.
'Modal' structuralism studies all possible concrete models for various mathematical theories
     Full Idea: The 'modal' version of eliminativist structuralism lifts the deductivist ban on modal notions. It studies what necessarily holds in all concrete models which are possible for various theories.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], I)
     A reaction: [He cites Putnam 1967, and Hellman 1989] If mathematical truths are held to be necessary (which seems to be right), then it seems reasonable to include modal notions, about what is possible, in its study.
'Set-theoretic' structuralism treats mathematics as various structures realised among the sets
     Full Idea: 'Set-theoretic' structuralism rejects deductive nominalism in favour of a background theory of sets, and mathematics as the various structures realized among the sets. This is often what mathematicians have in mind when they talk about structuralism.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], I)
     A reaction: This is the big shift from 'mathematics can largely be described in set theory' to 'mathematics just is set theory'. If it just is set theory, then which version of set theory? Which axioms? The safe iterative conception, or something bolder?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Structuralism differs from traditional Platonism, because the objects depend ontologically on their structure
     Full Idea: Structuralism can be distinguished from traditional Platonism in that it denies that mathematical objects from the same structure are ontologically independent of one another
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], III)
     A reaction: My instincts strongly cry out against all versions of this. If you are going to be a platonist (rather as if you are going to be religious) you might as well go for it big time and have independent objects, which will then dictate a structure.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Structuralism is right about algebra, but wrong about sets
     Full Idea: Against extreme views that all mathematical objects depend on the structures to which they belong, or that none do, I defend a compromise view, that structuralists are right about algebraic objects (roughly), but anti-structuralists are right about sets.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], Intro)
In mathematical structuralism the small depends on the large, which is the opposite of physical structures
     Full Idea: If objects depend on the other objects, this would mean an 'upward' dependence, in that they depend on the structure to which they belong, where the physical realm has a 'downward' dependence, with structures depending on their constituents.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], III)
     A reaction: This nicely captures an intuition I have that there is something wrong with a commitment primarily to 'structures'. Our only conception of such things is as built up out of components. Not that I am committing to mathematical 'components'!
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logical truth is true in all models, so mathematical objects can't be purely logical
     Full Idea: Modern logic requires that logical truths be true in all models, including ones devoid of any mathematical objects. It follows immediately that the existence of mathematical objects can never be a matter of logic alone.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 2)
     A reaction: Hm. Could there not be a complete set of models for a theory which all included mathematical objects? (I can't answer that).
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Game Formalism has no semantics, and Term Formalism reduces the semantics
     Full Idea: Game Formalism seeks to banish all semantics from mathematics, and Term Formalism seeks to reduce any such notions to purely syntactic ones.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 3.3)
     A reaction: This approach was stimulated by the need to justify the existence of the imaginary number i. Just say it is a letter!
7. Existence / C. Structure of Existence / 4. Ontological Dependence
There may be a one-way direction of dependence among sets, and among natural numbers
     Full Idea: We can give an exhaustive account of the identity of the empty set and its singleton without mentioning infinite sets, and it might be possible to defend the view that one natural number depends on its predecessor but not vice versa.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], V)
     A reaction: Linnebo uses this as one argument against mathematical structuralism, where the small seems to depend on the large. The view of sets rests on the iterative conception, where each level is derived from a lower level. He dismisses structuralism of sets.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / a. Ontological commitment
We speak of a theory's 'ideological commitments' as well as its 'ontological commitments'
     Full Idea: Some philosophers speak about a theory's 'ideological commitments' and not just about its 'ontological commitments'.
     From: Øystein Linnebo (Plural Quantification [2008], 5.4)
     A reaction: This is a third strategy for possibly evading one's ontological duty, along with fiddling with the words 'exist' or 'object'. An ideological commitment to something to which one is not actually ontologically committed conjures up stupidity and dogma.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
Ordinary speakers posit objects without concern for ontology
     Full Idea: Maybe ordinary speakers aren't very concerned about their ontological commitments, and sometimes find it convenient to posit objects.
     From: Øystein Linnebo (Plural Quantification [2008], 2.4)
     A reaction: I think this is the whole truth about the ontological commitment of ordinary language. We bring abstraction under control by pretending it is a world of physical objects. The 'left wing' in politics, 'dark deeds', a 'huge difference'.
8. Modes of Existence / B. Properties / 4. Intrinsic Properties
An 'intrinsic' property is either found in every duplicate, or exists independent of all externals
     Full Idea: There are two main ways of spelling out an 'intrinsic' property: if and only if it is shared by every duplicate of an object, ...and if and only if the object would have this property even if the rest of the universe were removed or disregarded.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], II)
     A reaction: [He cites B.Weatherson's Stanford Encyclopaedia article] How about an intrinsic property being one which explains its identity, or behaviour, or persistence conditions?
9. Objects / A. Existence of Objects / 1. Physical Objects
The modern concept of an object is rooted in quantificational logic
     Full Idea: Our modern general concept of an object is given content only in connection with modern quantificational logic.
     From: Øystein Linnebo (Plural Quantification Exposed [2003], §2)
     A reaction: [He mentions Frege, Carnap, Quine and Dummett] This is the first thing to tell beginners in modern analytical metaphysics. The word 'object' is very confusing. I think I prefer 'entity'.
19. Language / C. Assigning Meanings / 3. Predicates
Predicates are 'distributive' or 'non-distributive'; do individuals do what the group does?
     Full Idea: The predicate 'is on the table' is 'distributive', since some things are on the table if each one is, whereas the predicate 'form a circle' is 'non-distributive', since it is not analytic that when some things form a circle, each one forms a circle.
     From: Øystein Linnebo (Plural Quantification [2008], 1.1)
     A reaction: The first predicate can have singular or plural subjects, but the second requires a plural subject? Hm. 'The rope forms a circle'. The second is example is not true, as well as not analytic.