Ideas of Chris Daly, by Theme

[British, fl. 1995, At Keele University, then the University of Manchester.]

green numbers give full details    |    back to list of philosophers    |     unexpand these ideas    |    
8. Modes of Existence / B. Properties / 13. Tropes / a. Nature of tropes
We might treat both tropes and substances as fundamental, so we can't presume it is just tropes
     Full Idea: Since C.B. Martin accepts both tropes and substances as fundamental, the claim that tropes are the only fundamental constituents is a further, independent claim.
     From: Chris Daly (Tropes [1995], 4)
     A reaction: A dubious mode of argument. Martin may only make the claim because he is ignorant, of facts or of language. Why are some tropes perfectly similar? Is it the result of something more fundamental?
8. Modes of Existence / B. Properties / 13. Tropes / b. Critique of tropes
More than one trope (even identical ones!) can occupy the same location
     Full Idea: More than one trope can occupy the same spatio-temporal location, and it even seems possible for a pair of exactly resembling tropes to occupy the same spatio-temporal location.
     From: Chris Daly (Tropes [1995], 6)
     A reaction: This may be the strongest objection to tropes. Being disc-shaped and red would occupy the same location. Aristotle's example of mixing white with white (Idea 557) would be the second case. Individuation of these 'particulars' is the problem.
If tropes are linked by the existence of concurrence, a special relation is needed to link them all
     Full Idea: To explain how tropes form bundles, concurrence relations are invoked. But tropes F and G and a concurrence relation C don't ensure that F stands in C to G. So trope theory needs 'instantiation' relations (special relational tropes) after all.
     From: Chris Daly (Tropes [1995], 7)
     A reaction: Campbell presents relations as 'second-order' items dependent on tropes (Idea 8525), but that seems unclear. Daly's argument resembles Russell's (which he likes), that some sort of universal is inescapable. It also resembles Bradley's regress (7966).