Ideas from 'Introduction to Zermelo's 1930 paper' by Michael Hallett [1996], by Theme Structure

[found in 'From Kant to Hilbert: sourcebook Vol. 2' (ed/tr Ewald,William) [OUP 1996,0-19-850536-1]].

green numbers give full details    |     back to texts     |     unexpand these ideas


4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
The first-order ZF axiomatisation is highly non-categorical
                        Full Idea: The first-order Sermelo-Fraenkel axiomatisation is highly non-categorical.
                        From: Michael Hallett (Introduction to Zermelo's 1930 paper [1996], p.1213)
Non-categoricity reveals a sort of incompleteness, with sets existing that the axioms don't reveal
                        Full Idea: The non-categoricity of the axioms which Zermelo demonstrates reveals an incompleteness of a sort, ....for this seems to show that there will always be a set (indeed, an unending sequence) that the basic axioms are incapable of revealing to be sets.
                        From: Michael Hallett (Introduction to Zermelo's 1930 paper [1996], p.1215)
                        A reaction: Hallett says the incompleteness concerning Zermelo was the (transfinitely) indefinite iterability of the power set operation (which is what drives the 'iterative conception' of sets).
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
Zermelo allows ur-elements, to enable the widespread application of set-theory
                        Full Idea: Unlike earlier writers (such as Fraenkel), Zermelo clearly allows that there might be ur-elements (that is, objects other than the empty set, which have no members). Indeed he sees in this the possibility of widespread application of set-theory.
                        From: Michael Hallett (Introduction to Zermelo's 1930 paper [1996], p.1217)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The General Continuum Hypothesis and its negation are both consistent with ZF
                        Full Idea: In 1938, Gödel showed that ZF plus the General Continuum Hypothesis is consistent if ZF is. Cohen showed that ZF and not-GCH is also consistent if ZF is, which finally shows that neither GCH nor ¬GCH can be proved from ZF itself.
                        From: Michael Hallett (Introduction to Zermelo's 1930 paper [1996], p.1217)