Combining Texts

Ideas for 'fragments/reports', 'Introduction to Mathematical Philosophy' and 'Modes of Extension: comment on Fine'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


13 ideas

4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
The Darapti syllogism is fallacious: All M is S, all M is P, so some S is P' - but if there is no M? [Russell]
     Full Idea: Some moods of the syllogism are fallacious, e.g. 'Darapti': 'All M is S, all M is P, therefore some S is P', which fails if there is no M.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XV)
     A reaction: This critique rests on the fact that the existential quantifier entails some existence, but the universal quantifier does not.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
We can enumerate finite classes, but an intensional definition is needed for infinite classes [Russell]
     Full Idea: We know a great deal about a class without enumerating its members …so definition by extension is not necessary to knowledge about a class ..but enumeration of infinite classes is impossible for finite beings, so definition must be by intension.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
     A reaction: Presumably mathematical induction (which keeps apply the rule to extend the class) will count as an intension here.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Members define a unique class, whereas defining characteristics are numerous [Russell]
     Full Idea: There is only one class having a given set of members, whereas there are always many different characteristics by which a given class may be defined.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity says 'for any inductive cardinal, there is a class having that many terms' [Russell]
     Full Idea: The Axiom of Infinity may be enunciated as 'If n be any inductive cardinal number, there is at least one class of individuals having n terms'.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XIII)
     A reaction: So for every possible there exists a set of terms for it. Notice that they are 'terms', not 'objects'. We must decide whether we are allowed terms which don't refer to real objects.
We may assume that there are infinite collections, as there is no logical reason against them [Russell]
     Full Idea: There is no logical reason against infinite collections, and we are therefore justified, in logic, in investigating the hypothesis that there are such collections.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VIII)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The British parliament has one representative selected from each constituency [Russell]
     Full Idea: We have a class of representatives, who make up our Parliament, one being selected out of each constituency.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: You can rely on Russell for the clearest illustrations of these abstract ideas. He calls the Axiom of Choice the 'Multiplicative' Axiom.
Choice shows that if any two cardinals are not equal, one must be the greater [Russell]
     Full Idea: The [Axiom of Choice] is also equivalent to the assumption that of any two cardinals which are not equal, one must be the greater.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: It is illuminating for the uninitiated to learn that this result can't be taken for granted (with infinite cardinals).
Choice is equivalent to the proposition that every class is well-ordered [Russell]
     Full Idea: Zermelo has shown that [the Axiom of Choice] is equivalent to the proposition that every class is well-ordered, i.e. can be arranged in a series in which every sub-class has a first term (except, of course, the null class).
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: Russell calls Choice the 'Multiplicative' Axiom.
We can pick all the right or left boots, but socks need Choice to insure the representative class [Russell]
     Full Idea: Among boots we distinguish left and right, so we can choose all the right or left boots; with socks no such principle suggests itself, and we cannot be sure, without the [Axiom of Choice], that there is a class consisting of one sock from each pair.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: A deservedly famous illustration of a rather tricky part of set theory.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Reducibility: a family of functions is equivalent to a single type of function [Russell]
     Full Idea: The Axiom of Reducibility says 'There is a type of a-functions such that, given any a-function, it is formally equivalent to some function of the type in question'. ..It involves all that is really essential in the theory of classes. But is it true?
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVII)
     A reaction: I take this to say that in the theory of types, it is possible to reduce each level of type down to one type.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
Propositions about classes can be reduced to propositions about their defining functions [Russell]
     Full Idea: It is right (in its main lines) to say that there is a reduction of propositions nominally about classes to propositions about their defining functions.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVII)
     A reaction: The defining functions will involve the theory of types, in order to avoid the paradoxes of naïve set theory. This is Russell's strategy for rejecting the existence of sets.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
Russell's proposal was that only meaningful predicates have sets as their extensions [Russell, by Orenstein]
     Full Idea: Russell's solution (in the theory of types) consists of restricting the principle that every predicate has a set as its extension so that only meaningful predicates have sets as their extensions.
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919]) by Alex Orenstein - W.V. Quine Ch.3
     A reaction: There might be a chicken-and-egg problem here. How do you decide the members of a set (apart from ostensively) without deciding the predicate(s) that combine them?
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Classes are logical fictions, and are not part of the ultimate furniture of the world [Russell]
     Full Idea: The symbols for classes are mere conveniences, not representing objects called 'classes'. Classes are in fact logical fictions; they cannot be regarded as part of the ultimate furniture of the world.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], Ch.18), quoted by Stewart Shapiro - Thinking About Mathematics 5.2
     A reaction: I agree. For 'logical fictions' read 'abstractions'. To equate abstractions with fictions is to underline the fact that they are a human creation. They are either that or platonic objects - there is no middle way.