Combining Texts

Ideas for 'fragments/reports', 'Truth-maker Realism' and 'The Foundations of Mathematics'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


4 ideas

4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Stoic propositional logic is like chemistry - how atoms make molecules, not the innards of atoms [Chrysippus, by Devlin]
     Full Idea: In Stoic logic propositions are treated the way atoms are treated in present-day chemistry, where the focus is on the way atoms fit together to form molecules, rather than on the internal structure of the atoms.
     From: report of Chrysippus (fragments/reports [c.240 BCE]) by Keith Devlin - Goodbye Descartes Ch.2
     A reaction: A nice analogy to explain the nature of Propositional Logic, which was invented by the Stoics (N.B. after Aristotle had invented predicate logic).
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Chrysippus has five obvious 'indemonstrables' of reasoning [Chrysippus, by Diog. Laertius]
     Full Idea: Chrysippus has five indemonstrables that do not need demonstration:1) If 1st the 2nd, but 1st, so 2nd; 2) If 1st the 2nd, but not 2nd, so not 1st; 3) Not 1st and 2nd, the 1st, so not 2nd; 4) 1st or 2nd, the 1st, so not 2nd; 5) 1st or 2nd, not 2nd, so 1st.
     From: report of Chrysippus (fragments/reports [c.240 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 07.80-81
     A reaction: [from his lost text 'Dialectics'; squashed to fit into one quote] 1) is Modus Ponens, 2) is Modus Tollens. 4) and 5) are Disjunctive Syllogisms. 3) seems a bit complex to be an indemonstrable.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: there is an infinity of distinguishable individuals [Ramsey]
     Full Idea: The Axiom of Infinity means that there are an infinity of distinguishable individuals, which is an empirical proposition.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §5)
     A reaction: The Axiom sounds absurd, as a part of a logical system, but Ramsey ends up defending it. Logical tautologies, which seem to be obviously true, are rendered absurd if they don't refer to any objects, and some of them refer to infinities of objects.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Reducibility: to every non-elementary function there is an equivalent elementary function [Ramsey]
     Full Idea: The Axiom of Reducibility asserted that to every non-elementary function there is an equivalent elementary function [note: two functions are equivalent when the same arguments render them both true or both false].
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §2)
     A reaction: Ramsey in the business of showing that this axiom from Russell and Whitehead is not needed. He says that the axiom seems to be needed for induction and for Dedekind cuts. Since the cuts rest on it, and it is weak, Ramsey says it must go.