Combining Texts

Ideas for 'fragments/reports', 'Introducing the Philosophy of Mathematics' and 'The Philosophical Culture'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


8 ideas

4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
In classical/realist logic the connectives are defined by truth-tables [Friend]
     Full Idea: In the classical or realist view of logic the meaning of abstract symbols for logical connectives is given by the truth-tables for the symbol.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007])
     A reaction: Presumably this is realist because it connects them to 'truth', but only if that involves a fairly 'realist' view of truth. You could, of course, translate 'true' and 'false' in the table to empty (formalist) symbols such a 0 and 1. Logic is electronics.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Double negation elimination is not valid in intuitionist logic [Friend]
     Full Idea: In intuitionist logic, if we do not know that we do not know A, it does not follow that we know A, so the inference (and, in general, double negation elimination) is not intuitionistically valid.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.2)
     A reaction: That inference had better not be valid in any logic! I am unaware of not knowing the birthday of someone I have never heard of. Propositional attitudes such as 'know' are notoriously difficult to explain in formal logic.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic was developed for fictional or non-existent objects [Friend]
     Full Idea: Free logic is especially designed to help regiment our reasoning about fictional objects, or nonexistent objects of some sort.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 3.7)
     A reaction: This makes it sound marginal, but I wonder whether existential commitment shouldn't be eliminated from all logic. Why do fictional objects need a different logic? What logic should we use for Robin Hood, if we aren't sure whether or not he is real?
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A 'proper subset' of A contains only members of A, but not all of them [Friend]
     Full Idea: A 'subset' of A is a set containing only members of A, and a 'proper subset' is one that does not contain all the members of A. Note that the empty set is a subset of every set, but it is not a member of every set.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Is it the same empty set in each case? 'No pens' is a subset of 'pens', but is it a subset of 'paper'? Idea 8219 should be borne in mind when discussing such things, though I am not saying I agree with it.
A 'powerset' is all the subsets of a set [Friend]
     Full Idea: The 'powerset' of a set is a set made up of all the subsets of a set. For example, the powerset of {3,7,9} is {null, {3}, {7}, {9}, {3,7}, {3,9}, {7,9}, {3,7,9}}. Taking the powerset of an infinite set gets us from one infinite cardinality to the next.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Note that the null (empty) set occurs once, but not in the combinations. I begin to have queasy sympathies with the constructivist view of mathematics at this point, since no one has the time, space or energy to 'take' an infinite powerset.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Set theory makes a minimum ontological claim, that the empty set exists [Friend]
     Full Idea: As a realist choice of what is basic in mathematics, set theory is rather clever, because it only makes a very simple ontological claim: that, independent of us, there exists the empty set. The whole hierarchy of finite and infinite sets then follows.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: Even so, for non-logicians the existence of the empty set is rather counterintuitive. "There was nobody on the road, so I overtook him". See Ideas 7035 and 8322. You might work back to the empty set, but how do you start from it?
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Infinite sets correspond one-to-one with a subset [Friend]
     Full Idea: Two sets are the same size if they can be placed in one-to-one correspondence. But even numbers have one-to-one correspondence with the natural numbers. So a set is infinite if it has one-one correspondence with a proper subset.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Dedekind's definition. We can match 1 with 2, 2 with 4, 3 with 6, 4 with 8, etc. Logicians seem happy to give as a definition anything which fixes the target uniquely, even if it doesn't give the essence. See Frege on 0 and 1, Ideas 8653/4.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Major set theories differ in their axioms, and also over the additional axioms of choice and infinity [Friend]
     Full Idea: Zermelo-Fraenkel and Gödel-Bernays set theory differ over the notions of ordinal construction and over the notion of class, among other things. Then there are optional axioms which can be attached, such as the axiom of choice and the axiom of infinity.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.6)
     A reaction: This summarises the reasons why we cannot just talk about 'set theory' as if it was a single concept. The philosophical interest I would take to be found in disentangling the ontological commitments of each version.