Combining Texts

Ideas for 'The Boundary Stones of Thought', 'MacIntyre versus the Enlightenment' and 'teachings'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


9 ideas

4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Semantics for propositions: 1) validity preserves truth 2) non-contradition 3) bivalence 4) truth tables [Rumfitt]
     Full Idea: The classical semantics of natural language propositions says 1) valid arguments preserve truth, 2) no statement is both true and false, 3) each statement is either true or false, 4) the familiar truth tables.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
'Absolute necessity' would have to rest on S5 [Rumfitt]
     Full Idea: If there is such a notion as 'absolute necessity', its logic is surely S5.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 3.3)
     A reaction: There are plenty of people (mainly in the strict empiricist tradition) who don't believe in 'absolute' necessity.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
It is the second-order part of intuitionistic logic which actually negates some classical theorems [Rumfitt]
     Full Idea: Although intuitionistic propositional and first-order logics are sub-systems of the corresponding classical systems, intuitionistic second-order logic affirms the negations of some classical theorems.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
Intuitionists can accept Double Negation Elimination for decidable propositions [Rumfitt]
     Full Idea: Double Negation Elimination is a rule of inference which the classicist accepts without restriction, but which the intuitionist accepts only for decidable propositions.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
     A reaction: This cures me of my simplistic understanding that intuitionists just reject the rules about double negation.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Most set theorists doubt bivalence for the Continuum Hypothesis, but still use classical logic [Rumfitt]
     Full Idea: Many set theorists doubt if the Generalised Continuum Hypothesis must be either true or false; certainly, its bivalence is far from obvious. All the same, almost all set theorists use classical logic in their proofs.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 7.2)
     A reaction: His point is that classical logic is usually taken to rest on bivalence. He offers the set theorists a helping hand, by defending classical logic without resorting to bivalence.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
The iterated conception of set requires continual increase in axiom strength [Rumfitt]
     Full Idea: We are doomed to postulate an infinite sequence of successively stronger axiom systems as we try to spell out what is involved in iterating the power set operation 'as far as possible'.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 9.3)
     A reaction: [W.W. Tait is behind this idea] The problem with set theory, then, especially as a foundation of mathematics, is that it doesn't just expand, but has to keep reinventing itself. The 'large cardinal axioms' are what is referred to.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
A set may well not consist of its members; the empty set, for example, is a problem [Rumfitt]
     Full Idea: There seem strong grounds for rejecting the thesis that a set consists of its members. For one thing, the empty set is a perpetual embarrassment for the thesis.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 8.4)
     A reaction: Rumfitt also says that if 'red' has an extension, then membership of that set must be vague. Extensional sets are precise because their objects are decided in advance, but intensional (or logical) sets, decided by a predicate, can be vague.
A set can be determinate, because of its concept, and still have vague membership [Rumfitt]
     Full Idea: Vagueness in respect of membership is consistent with determinacy of the set's identity, so long as a set's identity is taken to consist, not in its having such-and-such members, but in its being the extension of the concept A.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 8.4)
     A reaction: To be determinate, it must be presumed that there is some test which will decide what falls under the concept. The rule can say 'if it is vague, reject it' or 'if it is vague, accept it'. Without one of those, how could the set have a clear identity?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
If the totality of sets is not well-defined, there must be doubt about the Power Set Axiom [Rumfitt]
     Full Idea: Someone who is sympathetic to the thesis that the totality of sets is not well-defined ought to concede that we have no reason to think that the Power Set Axiom is true.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 9.6)
     A reaction: The point is that it is only this Axiom which generates the vast and expanding totality. In principle it is hard, though, to see what is intrinsically wrong with the operation of taking the power set of a set. Hence 'limitation of size'?