Combining Texts

Ideas for 'Defending the Axioms', 'The philosophical basis of intuitionist logic' and 'Set Theory and related topics (2nd ed)'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


3 ideas

4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Dummett says classical logic rests on meaning as truth, while intuitionist logic rests on assertability [Dummett, by Kitcher]
     Full Idea: Dummett argues that classical logic depends on the choice of the concept of truth as central to the theory of meaning, while for the intuitionist the concept of assertability occupies this position.
     From: report of Michael Dummett (The philosophical basis of intuitionist logic [1973]) by Philip Kitcher - The Nature of Mathematical Knowledge 06.5
     A reaction: Since I can assert any nonsense I choose, this presumably means 'warranted' assertability, which is tied to the concept of proof in mathematics. You can reason about falsehoods, or about uninterpreted variables. Can you 'assert' 'Fx'?
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
Equivalence relations are reflexive, symmetric and transitive, and classify similar objects [Lipschutz]
     Full Idea: A relation R on a non-empty set S is an equivalence relation if it is reflexive (for each member a, aRa), symmetric (if aRb, then bRa), and transitive (aRb and bRc, so aRc). It tries to classify objects that are in some way 'alike'.
     From: Seymour Lipschutz (Set Theory and related topics (2nd ed) [1998], 3.9)
     A reaction: So this is an attempt to formalise the common sense notion of seeing that two things have something in common. Presumably a 'way' of being alike is going to be a property or a part
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice paradoxically allows decomposing a sphere into two identical spheres [Maddy]
     Full Idea: One feature of the Axiom of Choice that troubled many mathematicians was the so-called Banach-Tarski paradox: using the Axiom, a sphere can be decomposed into finitely many parts and those parts reassembled into two spheres the same size as the original.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
     A reaction: (The key is that the parts are non-measurable). To an outsider it is puzzling that the Axiom has been universally accepted, even though it produces such a result. Someone can explain that, I'm sure.