Combining Texts

Ideas for 'On the Question of Absolute Undecidability', 'Principia Mathematica' and 'The Boundary Stones of Thought'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


10 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
Most set theorists doubt bivalence for the Continuum Hypothesis, but still use classical logic [Rumfitt]
     Full Idea: Many set theorists doubt if the Generalised Continuum Hypothesis must be either true or false; certainly, its bivalence is far from obvious. All the same, almost all set theorists use classical logic in their proofs.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 7.2)
     A reaction: His point is that classical logic is usually taken to rest on bivalence. He offers the set theorists a helping hand, by defending classical logic without resorting to bivalence.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
The iterated conception of set requires continual increase in axiom strength [Rumfitt]
     Full Idea: We are doomed to postulate an infinite sequence of successively stronger axiom systems as we try to spell out what is involved in iterating the power set operation 'as far as possible'.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 9.3)
     A reaction: [W.W. Tait is behind this idea] The problem with set theory, then, especially as a foundation of mathematics, is that it doesn't just expand, but has to keep reinventing itself. The 'large cardinal axioms' are what is referred to.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
A set may well not consist of its members; the empty set, for example, is a problem [Rumfitt]
     Full Idea: There seem strong grounds for rejecting the thesis that a set consists of its members. For one thing, the empty set is a perpetual embarrassment for the thesis.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 8.4)
     A reaction: Rumfitt also says that if 'red' has an extension, then membership of that set must be vague. Extensional sets are precise because their objects are decided in advance, but intensional (or logical) sets, decided by a predicate, can be vague.
A set can be determinate, because of its concept, and still have vague membership [Rumfitt]
     Full Idea: Vagueness in respect of membership is consistent with determinacy of the set's identity, so long as a set's identity is taken to consist, not in its having such-and-such members, but in its being the extension of the concept A.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 8.4)
     A reaction: To be determinate, it must be presumed that there is some test which will decide what falls under the concept. The rule can say 'if it is vague, reject it' or 'if it is vague, accept it'. Without one of those, how could the set have a clear identity?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
If the totality of sets is not well-defined, there must be doubt about the Power Set Axiom [Rumfitt]
     Full Idea: Someone who is sympathetic to the thesis that the totality of sets is not well-defined ought to concede that we have no reason to think that the Power Set Axiom is true.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 9.6)
     A reaction: The point is that it is only this Axiom which generates the vast and expanding totality. In principle it is hard, though, to see what is intrinsically wrong with the operation of taking the power set of a set. Hence 'limitation of size'?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Russell saw Reducibility as legitimate for reducing classes to logic [Linsky,B on Russell/Whitehead]
     Full Idea: The axiom of Reducibility ...is crucial in the reduction of classes to logic, ...and seems to be a quite legitimate logical notion for Russell.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by Bernard Linsky - Russell's Metaphysical Logic 6.4
     A reaction: This is an unusual defence of the axiom, which is usually presumed to have been kicked into the long grass by Quine. If one could reduce classes to logic, that would destroy the opposition to logicism in a single neat coup.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Russell denies extensional sets, because the null can't be a collection, and the singleton is just its element [Russell/Whitehead, by Shapiro]
     Full Idea: Russell adduces two reasons against the extensional view of classes, namely the existence of the null class (which cannot very well be a collection), and the unit classes (which would have to be identical with their single elements).
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Stewart Shapiro - Structure and Ontology p.459
     A reaction: Gödel believes in the reality of classes. I have great sympathy with Russell, when people start to claim that sets are not just conveniences to help us think about things, but actual abstract entities. Is the singleton of my pencil is on this table?
We regard classes as mere symbolic or linguistic conveniences [Russell/Whitehead]
     Full Idea: Classes, so far as we introduce them, are merely symbolic or linguistic conveniences, not genuine objects.
     From: B Russell/AN Whitehead (Principia Mathematica [1913], p.72), quoted by Penelope Maddy - Naturalism in Mathematics III.2