Combining Texts

Ideas for 'On the Question of Absolute Undecidability', 'The Philosopher's Toolkit' and 'Letters to Wolff'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


4 ideas

4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
'Natural' systems of deduction are based on normal rational practice, rather than on axioms [Baggini /Fosl]
     Full Idea: A 'natural' system of deduction does not posit any axioms, but looks instead for its formulae to the practices of ordinary rationality.
     From: J Baggini / PS Fosl (The Philosopher's Toolkit [2003], §1.09)
     A reaction: Presumably there is some middle ground, where we attempt to infer the axioms of normal practice, and then build a strict system on them. We must be allowed to criticise 'normal' rationality, I hope.
In ideal circumstances, an axiom should be such that no rational agent could possibly object to its use [Baggini /Fosl]
     Full Idea: In ideal circumstances, an axiom should be such that no rational agent could possibly object to its use.
     From: J Baggini / PS Fosl (The Philosopher's Toolkit [2003], §1.09)
     A reaction: Yes, but the trouble is that all our notions of 'rational' (giving reasons, being consistent) break down when we look at unsupported axioms. In what sense is something rational if it is self-evident?
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)