Combining Texts

Ideas for 'works', 'Noneism or Allism?' and 'Principia Mathematica'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


3 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Russell saw Reducibility as legitimate for reducing classes to logic [Linsky,B on Russell/Whitehead]
     Full Idea: The axiom of Reducibility ...is crucial in the reduction of classes to logic, ...and seems to be a quite legitimate logical notion for Russell.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by Bernard Linsky - Russell's Metaphysical Logic 6.4
     A reaction: This is an unusual defence of the axiom, which is usually presumed to have been kicked into the long grass by Quine. If one could reduce classes to logic, that would destroy the opposition to logicism in a single neat coup.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Russell denies extensional sets, because the null can't be a collection, and the singleton is just its element [Russell/Whitehead, by Shapiro]
     Full Idea: Russell adduces two reasons against the extensional view of classes, namely the existence of the null class (which cannot very well be a collection), and the unit classes (which would have to be identical with their single elements).
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Stewart Shapiro - Structure and Ontology p.459
     A reaction: Gödel believes in the reality of classes. I have great sympathy with Russell, when people start to claim that sets are not just conveniences to help us think about things, but actual abstract entities. Is the singleton of my pencil is on this table?
We regard classes as mere symbolic or linguistic conveniences [Russell/Whitehead]
     Full Idea: Classes, so far as we introduce them, are merely symbolic or linguistic conveniences, not genuine objects.
     From: B Russell/AN Whitehead (Principia Mathematica [1913], p.72), quoted by Penelope Maddy - Naturalism in Mathematics III.2