Combining Texts

Ideas for 'fragments/reports', 'What Required for Foundation for Maths?' and 'What is Cantor's Continuum Problem?'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


7 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
We perceive the objects of set theory, just as we perceive with our senses [Gödel]
     Full Idea: We have something like perception of the objects of set theory, shown by the axioms forcing themselves on us as being true. I don't see why we should have less confidence in this kind of perception (i.e. mathematical intuition) than in sense perception.
     From: Kurt Gödel (What is Cantor's Continuum Problem? [1964], p.483), quoted by Michčle Friend - Introducing the Philosophy of Mathematics 2.4
     A reaction: A famous strong expression of realism about the existence of sets. It is remarkable how the ingredients of mathematics spread themselves before the mind like a landscape, inviting journeys - but I think that just shows how minds cope with abstractions.
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
     Full Idea: Set theory cannot be an axiomatic theory, because the very notion of an axiomatic theory makes no sense without it.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: This will come as a surprise to Penelope Maddy, who battles with ways to accept the set theory axioms as the foundation of mathematics. Mayberry says that the basic set theory required is much more simple and intuitive.
There is a semi-categorical axiomatisation of set-theory [Mayberry]
     Full Idea: We can give a semi-categorical axiomatisation of set-theory (all that remains undetermined is the size of the set of urelements and the length of the sequence of ordinals). The system is second-order in formalisation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: I gather this means the models may not be isomorphic to one another (because they differ in size), but can be shown to isomorphic to some third ingredient. I think. Mayberry says this shows there is no such thing as non-Cantorian set theory.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
     Full Idea: The (misnamed!) Axiom of Infinity expresses Cantor's fundamental assumption that the species of natural numbers is finite in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Gödel proved the classical relative consistency of the axiom V = L [Gödel, by Putnam]
     Full Idea: Gödel proved the classical relative consistency of the axiom V = L (which implies the axiom of choice and the generalized continuum hypothesis). This established the full independence of the continuum hypothesis from the other axioms.
     From: report of Kurt Gödel (What is Cantor's Continuum Problem? [1964]) by Hilary Putnam - Mathematics without Foundations
     A reaction: Gödel initially wanted to make V = L an axiom, but the changed his mind. Maddy has lots to say on the subject.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
     Full Idea: The idea of 'generating' sets is only a metaphor - the existence of the hierarchy is established without appealing to such dubious notions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
     A reaction: Presumably there can be a 'dependence' or 'determination' relation which does not involve actual generation.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
     Full Idea: Our very notion of a set is that of an extensional plurality limited in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)