Combining Texts

Ideas for 'fragments/reports', 'W.V. Quine' and 'Introduction to the Philosophy of Mathematics'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


7 ideas

5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
Modus ponens is one of five inference rules identified by the Stoics [Chrysippus, by Devlin]
     Full Idea: Modus ponens is just one of the five different inference rules identified by the Stoics.
     From: report of Chrysippus (fragments/reports [c.240 BCE]) by Keith Devlin - Goodbye Descartes Ch.2
     A reaction: Modus ponens strikes me as being more like a definition of implication than a 'rule'. Implication is what gets you from one truth to another. All the implications of a truth must also be true.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Every proposition is either true or false [Chrysippus, by Cicero]
     Full Idea: We hold fast to the position, defended by Chrysippus, that every proposition is either true or false.
     From: report of Chrysippus (fragments/reports [c.240 BCE]) by M. Tullius Cicero - On Fate ('De fato') 38
     A reaction: I am intrigued to know exactly how you defend this claim. It may depend what you mean by a proposition. A badly expressed proposition may have indeterminate truth, quite apart from the vague, the undecidable etc.
Excluded middle says P or not-P; bivalence says P is either true or false [Colyvan]
     Full Idea: The law of excluded middle (for every proposition P, either P or not-P) must be carefully distinguished from its semantic counterpart bivalence, that every proposition is either true or false.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: So excluded middle makes no reference to the actual truth or falsity of P. It merely says P excludes not-P, and vice versa.
5. Theory of Logic / G. Quantification / 1. Quantification
Traditionally, universal sentences had existential import, but were later treated as conditional claims [Orenstein]
     Full Idea: In traditional logic from Aristotle to Kant, universal sentences have existential import, but Brentano and Boole construed them as universal conditionals (such as 'for anything, if it is a man, then it is mortal').
     From: Alex Orenstein (W.V. Quine [2002], Ch.2)
     A reaction: I am sympathetic to the idea that even the 'existential' quantifier should be treated as conditional, or fictional. Modern Christians may well routinely quantify over angels, without actually being committed to them.
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
The substitution view of quantification says a sentence is true when there is a substitution instance [Orenstein]
     Full Idea: The substitution view of quantification explains 'there-is-an-x-such-that x is a man' as true when it has a true substitution instance, as in the case of 'Socrates is a man', so the quantifier can be read as 'it is sometimes true that'.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: The word 'true' crops up twice here. The alternative (existential-referential) view cites objects, so the substitution view is a more linguistic approach.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim proved his result for a first-order sentence, and Skolem generalised it [Colyvan]
     Full Idea: Löwenheim proved that if a first-order sentence has a model at all, it has a countable model. ...Skolem generalised this result to systems of first-order sentences.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are 'categorical' if all of their models are isomorphic [Colyvan]
     Full Idea: A set of axioms is said to be 'categorical' if all models of the axioms in question are isomorphic.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
     A reaction: The best example is the Peano Axioms, which are 'true up to isomorphism'. Set theory axioms are only 'quasi-isomorphic'.