Combining Texts

Ideas for 'fragments/reports', 'Giordano Bruno and Hermetic Tradition' and 'The Principles of Mathematics'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


12 ideas

5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
Modus ponens is one of five inference rules identified by the Stoics [Chrysippus, by Devlin]
     Full Idea: Modus ponens is just one of the five different inference rules identified by the Stoics.
     From: report of Chrysippus (fragments/reports [c.240 BCE]) by Keith Devlin - Goodbye Descartes Ch.2
     A reaction: Modus ponens strikes me as being more like a definition of implication than a 'rule'. Implication is what gets you from one truth to another. All the implications of a truth must also be true.
5. Theory of Logic / B. Logical Consequence / 8. Material Implication
It would be circular to use 'if' and 'then' to define material implication [Russell]
     Full Idea: It would be a vicious circle to define material implication as meaning that if one proposition is true, then another is true, for 'if' and 'then' already involve implication.
     From: Bertrand Russell (The Principles of Mathematics [1903], §037)
     A reaction: Hence the preference for defining it by the truth table, or as 'not-p or q'.
Implication cannot be defined [Russell]
     Full Idea: A definition of implication is quite impossible.
     From: Bertrand Russell (The Principles of Mathematics [1903], §016)
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
The only classes are things, predicates and relations [Russell]
     Full Idea: The only classes appear to be things, predicates and relations.
     From: Bertrand Russell (The Principles of Mathematics [1903], §440)
     A reaction: This is the first-order logic view of reality, which has begun to look incredibly impoverished in modern times. Processes certainly demand a hearing, as do modal facts.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Every proposition is either true or false [Chrysippus, by Cicero]
     Full Idea: We hold fast to the position, defended by Chrysippus, that every proposition is either true or false.
     From: report of Chrysippus (fragments/reports [c.240 BCE]) by M. Tullius Cicero - On Fate ('De fato') 38
     A reaction: I am intrigued to know exactly how you defend this claim. It may depend what you mean by a proposition. A badly expressed proposition may have indeterminate truth, quite apart from the vague, the undecidable etc.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / b. Basic connectives
There seem to be eight or nine logical constants [Russell]
     Full Idea: The number of logical constants is not great: it appears, in fact, to be eight or nine.
     From: Bertrand Russell (The Principles of Mathematics [1903], §012)
     A reaction: There is, of course, lots of scope for interdefinability. No one is going to disagree greatly with his claim, so it is an interesting fact, which invites some sort of (non-platonic) explanation.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / c. not
Negations are not just reversals of truth-value, since that can happen without negation [Wittgenstein on Russell]
     Full Idea: Russell explained ¬p by saying that ¬p is true if p is false and false if p is true. But this is not an explanation of negation, for it might apply to propositions other than the negative.
     From: comment on Bertrand Russell (The Principles of Mathematics [1903]) by Ludwig Wittgenstein - Lectures 1930-32 (student notes) B XI.3
     A reaction: Presumably he is thinking of 'the light is on' and 'the light is off'. A very astute criticism, which seems to be correct. What would Russell say? Perhaps we add that negation is an 'operation' which achieves flipping of the truth-value?
5. Theory of Logic / E. Structures of Logic / 3. Constants in Logic
Constants are absolutely definite and unambiguous [Russell]
     Full Idea: A constant is something absolutely definite, concerning which there is no ambiguity whatever.
     From: Bertrand Russell (The Principles of Mathematics [1903], §006)
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
Variables don't stand alone, but exist as parts of propositional functions [Russell]
     Full Idea: A variable is not any term simply, but any term as entering into a propositional function.
     From: Bertrand Russell (The Principles of Mathematics [1903], §093)
     A reaction: So we should think of variables entirely by their role, rather than as having a semantics of their own (pace Kit Fine? - though see Russell §106, p.107).
5. Theory of Logic / G. Quantification / 1. Quantification
'Any' is better than 'all' where infinite classes are concerned [Russell]
     Full Idea: The word 'any' is preferable to the word 'all' where infinite classes are concerned.
     From: Bertrand Russell (The Principles of Mathematics [1903], §284)
     A reaction: The reason must be that it is hard to quantify over 'all' of the infinite members, but it is easier to say what is true of any one of them.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / a. Achilles paradox
The Achilles Paradox concerns the one-one correlation of infinite classes [Russell]
     Full Idea: When the Achilles Paradox is translated into arithmetical language, it is seen to be concerned with the one-one correlation of two infinite classes.
     From: Bertrand Russell (The Principles of Mathematics [1903], §321)
     A reaction: Dedekind's view of infinity (Idea 9826) shows why this results in a horrible tangle.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
Russell discovered the paradox suggested by Burali-Forti's work [Russell, by Lavine]
     Full Idea: Burali-Forti didn't discover any paradoxes, though his work suggested a paradox to Russell.
     From: report of Bertrand Russell (The Principles of Mathematics [1903]) by Shaughan Lavine - Understanding the Infinite I