Combining Texts

Ideas for 'fragments/reports', 'Introducing the Philosophy of Mathematics' and '06: Epistle to the Romans'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


6 ideas

5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
Modus ponens is one of five inference rules identified by the Stoics [Chrysippus, by Devlin]
     Full Idea: Modus ponens is just one of the five different inference rules identified by the Stoics.
     From: report of Chrysippus (fragments/reports [c.240 BCE]) by Keith Devlin - Goodbye Descartes Ch.2
     A reaction: Modus ponens strikes me as being more like a definition of implication than a 'rule'. Implication is what gets you from one truth to another. All the implications of a truth must also be true.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Every proposition is either true or false [Chrysippus, by Cicero]
     Full Idea: We hold fast to the position, defended by Chrysippus, that every proposition is either true or false.
     From: report of Chrysippus (fragments/reports [c.240 BCE]) by M. Tullius Cicero - On Fate ('De fato') 38
     A reaction: I am intrigued to know exactly how you defend this claim. It may depend what you mean by a proposition. A badly expressed proposition may have indeterminate truth, quite apart from the vague, the undecidable etc.
The law of excluded middle is syntactic; it just says A or not-A, not whether they are true or false [Friend]
     Full Idea: The law of excluded middle is purely syntactic: it says for any well-formed formula A, either A or not-A. It is not a semantic law; it does not say that either A is true or A is false. The semantic version (true or false) is the law of bivalence.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.2)
     A reaction: No wonder these two are confusing, sufficiently so for a lot of professional philosophers to blur the distinction. Presumably the 'or' is exclusive. So A-and-not-A is a contradiction; but how do you explain a contradiction without mentioning truth?
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
Intuitionists read the universal quantifier as "we have a procedure for checking every..." [Friend]
     Full Idea: In the intuitionist version of quantification, the universal quantifier (normally read as "all") is understood as "we have a procedure for checking every" or "we have checked every".
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.5)
     A reaction: It seems better to describe this as 'verificationist' (or, as Dummett prefers, 'justificationist'). Intuition suggests an ability to 'see' beyond the evidence. It strikes me as bizarre to say that you can't discuss things you can't check.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / a. Set theory paradoxes
Paradoxes can be solved by talking more loosely of 'classes' instead of 'sets' [Friend]
     Full Idea: The realist meets the Burali-Forti paradox by saying that all the ordinals are a 'class', not a set. A proper class is what we discuss when we say "all" the so-and-sos when they cannot be reached by normal set-construction. Grammar is their only limit.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: This strategy would be useful for Class Nominalism, which tries to define properties in terms of classes, but gets tangled in paradoxes. But why bother with strict sets if easy-going classes will do just as well? Descartes's Dream: everything is rational.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The Burali-Forti paradox asks whether the set of all ordinals is itself an ordinal [Friend]
     Full Idea: The Burali-Forti paradox says that if ordinals are defined by 'gathering' all their predecessors with the empty set, then is the set of all ordinals an ordinal? It is created the same way, so it should be a further member of this 'complete' set!
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: This is an example (along with Russell's more famous paradox) of the problems that began to appear in set theory in the early twentieth century. See Idea 8675 for a modern solution.