Combining Texts

Ideas for 'fragments/reports', 'Introduction to Russell's Theory of Types' and 'Intros to Russell's 'Essays in Analysis''

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


4 ideas

5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
Modus ponens is one of five inference rules identified by the Stoics [Chrysippus, by Devlin]
     Full Idea: Modus ponens is just one of the five different inference rules identified by the Stoics.
     From: report of Chrysippus (fragments/reports [c.240 BCE]) by Keith Devlin - Goodbye Descartes Ch.2
     A reaction: Modus ponens strikes me as being more like a definition of implication than a 'rule'. Implication is what gets you from one truth to another. All the implications of a truth must also be true.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Every proposition is either true or false [Chrysippus, by Cicero]
     Full Idea: We hold fast to the position, defended by Chrysippus, that every proposition is either true or false.
     From: report of Chrysippus (fragments/reports [c.240 BCE]) by M. Tullius Cicero - On Fate ('De fato') 38
     A reaction: I am intrigued to know exactly how you defend this claim. It may depend what you mean by a proposition. A badly expressed proposition may have indeterminate truth, quite apart from the vague, the undecidable etc.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Sets always exceed terms, so all the sets must exceed all the sets [Lackey]
     Full Idea: Cantor proved that the number of sets in a collection of terms is larger than the number of terms. Hence Cantor's Paradox says the number of sets in the collection of all sets must be larger than the number of sets in the collection of all sets.
     From: Douglas Lackey (Intros to Russell's 'Essays in Analysis' [1973], p.127)
     A reaction: The sets must count as terms in the next iteration, but that is a normal application of the Power Set axiom.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
It seems that the ordinal number of all the ordinals must be bigger than itself [Lackey]
     Full Idea: The ordinal series is well-ordered and thus has an ordinal number, and a series of ordinals to a given ordinal exceeds that ordinal by 1. So the series of all ordinals has an ordinal number that exceeds its own ordinal number by 1.
     From: Douglas Lackey (Intros to Russell's 'Essays in Analysis' [1973], p.127)
     A reaction: Formulated by Burali-Forti in 1897.