Combining Texts

Ideas for 'works', 'Logical Necessity' and 'On 'Generation and Corruption''

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


8 ideas

5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Soundness in argument varies with context, and may be achieved very informally indeed [Rumfitt]
     Full Idea: Our ordinary standards for deeming arguments to be sound vary greatly from context to context. Even the package tourist's syllogism ('It's Tuesday, so this is Belgium') may meet the operative standards for soundness.
     From: Ian Rumfitt (Logical Necessity [2010], Intro)
     A reaction: No doubt one could spell out the preconceptions of package tourist reasoning, and arrive at the logical form of the implication which is being offered.
There is a modal element in consequence, in assessing reasoning from suppositions [Rumfitt]
     Full Idea: There is a modal element in consequence, in its applicability to assessing reasoning from suppositions.
     From: Ian Rumfitt (Logical Necessity [2010], §2)
We reject deductions by bad consequence, so logical consequence can't be deduction [Rumfitt]
     Full Idea: A rule is to be rejected if it enables us to deduce from some premisses a purported conclusion that does not follow from them in the broad sense. The idea that deductions answer to consequence is incomprehensible if consequence consists in deducibility.
     From: Ian Rumfitt (Logical Necessity [2010], §2)
5. Theory of Logic / D. Assumptions for Logic / 3. Contradiction
Contradictions include 'This is red and not coloured', as well as the formal 'B and not-B' [Rumfitt]
     Full Idea: Overt contradictions include formal contradictions of form 'B and not B', but I also take them to include 'This is red all over and green all over' and 'This is red and not coloured'.
     From: Ian Rumfitt (Logical Necessity [2010], Intro)
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Geometrical axioms in logic are nowadays replaced by inference rules (which imply the logical truths) [Rumfitt]
     Full Idea: The geometrical style of formalization of logic is now little more than a quaint anachronism, largely because it fails to show logical truths for what they are: simply by-products of rules of inference that are applicable to suppositions.
     From: Ian Rumfitt (Logical Necessity [2010], §1)
     A reaction: This is the rejection of Russell-style axiom systems in favour of Gentzen-style natural deduction systems (starting from rules). Rumfitt quotes Dummett in support.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
There are infinite sets that are not enumerable [Cantor, by Smith,P]
     Full Idea: Cantor's Theorem (1874) says there are infinite sets that are not enumerable. This is proved by his 1891 'diagonal argument'.
     From: report of George Cantor (works [1880]) by Peter Smith - Intro to Gödel's Theorems 2.3
     A reaction: [Smith summarises the diagonal argument]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Cantor's Paradox: the power set of the universe must be bigger than the universe, yet a subset of it [Cantor, by Hart,WD]
     Full Idea: The problem of Cantor's Paradox is that the power set of the universe has to be both bigger than the universe (by Cantor's theorem) and not bigger (since it is a subset of the universe).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 3
     A reaction: Russell eliminates the 'universe' in his theory of types. I don't see why you can't just say that the members of the set are hypothetical rather than real, and that hypothetically the universe might contain more things than it does.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The powerset of all the cardinal numbers is required to be greater than itself [Cantor, by Friend]
     Full Idea: Cantor's Paradox says that the powerset of a set has a cardinal number strictly greater than the original set, but that means that the powerset of the set of all the cardinal numbers is greater than itself.
     From: report of George Cantor (works [1880]) by Michčle Friend - Introducing the Philosophy of Mathematics
     A reaction: Friend cites this with the Burali-Forti paradox and the Russell paradox as the best examples of the problems of set theory in the early twentieth century. Did this mean that sets misdescribe reality, or that we had constructed them wrongly?