Combining Texts

Ideas for 'Mencius', 'Philosophy of Logics' and 'The Philosophy of Mathematics'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


3 ideas

5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists reject excluded middle, not for a third value, but for possibility of proof [Dummett]
     Full Idea: It must not be concluded from the rejection of excluded middle that intuitionistic logic operates with three values: true, false, and neither true nor false. It does not make use of true and false, but only with a construction being a proof.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 8.1)
     A reaction: This just sounds like verificationism to me, with all its problems. It seems to make speculative statements meaningless, which can't be right. Realism has lots of propositions which are assumed to be true or false, but also unknowable.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
First-order logic concerns objects; second-order adds properties, kinds, relations and functions [Dummett]
     Full Idea: First-order logic is distinguished by generalizations (quantification) only over objects: second-order logic admits generalizations or quantification over properties or kinds of objects, and over relations between them, and functions defined over them.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 3.1)
     A reaction: Second-order logic was introduced by Frege, but is (interestingly) rejected by Quine, because of the ontological commitments involved. I remain unconvinced that quantification entails ontological commitment, so I'm happy.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths and inference are characterized either syntactically or semantically [Dummett]
     Full Idea: There are two ways of characterizing logical truths and correct inference. Proof-theoretic or syntactic characterizations, if the formalization admits of proof or derivation; and model-theoretic or semantic versions, being true in all interpretations.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 3.1)
     A reaction: Dummett calls this distinction 'fundamental'. The second one involves truth, and hence meaning, where the first one just responds to rules. ..But how can you have a notion of correctly following a rule, without a notion of truth?