Combining Texts

Ideas for 'fragments/reports', 'Thinking About Logic' and 'Introduction to Mathematical Logic'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


21 ideas

5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
To determine the patterns in logic, one must identify its 'building blocks' [Walicki]
     Full Idea: In order to construct precise and valid patterns of arguments one has to determine their 'building blocks'. One has to identify the basic terms, their kinds and means of combination.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History Intro)
     A reaction: A deceptively simple and important idea. All explanation requires patterns and levels, and it is the idea of building blocks which makes such things possible. It is right at the centre of our grasp of everything.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Not all validity is captured in first-order logic [Read]
     Full Idea: We must recognise that first-order classical logic is inadequate to describe all valid consequences, that is, all cases in which it is impossible for the premisses to be true and the conclusion false.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: This is despite the fact that first-order logic is 'complete', in the sense that its own truths are all provable.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
The non-emptiness of the domain is characteristic of classical logic [Read]
     Full Idea: The non-emptiness of the domain is characteristic of classical logic.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Semantics must precede proof in higher-order logics, since they are incomplete [Read]
     Full Idea: For the realist, study of semantic structures comes before study of proofs. In higher-order logic is has to, for the logics are incomplete.
     From: Stephen Read (Thinking About Logic [1995], Ch.9)
     A reaction: This seems to be an important general observation about any incomplete system, such as Peano arithmetic. You may dream the old rationalist dream of starting from the beginning and proving everything, but you can't. Start with truth and meaning.
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
We should exclude second-order logic, precisely because it captures arithmetic [Read]
     Full Idea: Those who believe mathematics goes beyond logic use that fact to argue that classical logic is right to exclude second-order logic.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
A theory of logical consequence is a conceptual analysis, and a set of validity techniques [Read]
     Full Idea: A theory of logical consequence, while requiring a conceptual analysis of consequence, also searches for a set of techniques to determine the validity of particular arguments.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
Logical consequence isn't just a matter of form; it depends on connections like round-square [Read]
     Full Idea: If classical logic insists that logical consequence is just a matter of the form, we fail to include as valid consequences those inferences whose correctness depends on the connections between non-logical terms (such as 'round' and 'square').
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: He suggests that an inference such as 'round, so not square' should be labelled as 'materially valid'.
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
A theory is logically closed, which means infinite premisses [Read]
     Full Idea: A 'theory' is any logically closed set of propositions, ..and since any proposition has infinitely many consequences, including all the logical truths, so that theories have infinitely many premisses.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: Read is introducing this as the essential preliminary to an account of the Compactness Theorem, which relates these infinite premisses to the finite.
5. Theory of Logic / G. Quantification / 1. Quantification
Quantifiers are second-order predicates [Read]
     Full Idea: Quantifiers are second-order predicates.
     From: Stephen Read (Thinking About Logic [1995], Ch.5)
     A reaction: [He calls this 'Frege's insight'] They seem to be second-order in Tarski's sense, that they are part of a metalanguage about the sentence, rather than being a part of the sentence.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
In second-order logic the higher-order variables range over all the properties of the objects [Read]
     Full Idea: The defining factor of second-order logic is that, while the domain of its individual variables may be arbitrary, the range of the first-order variables is all the properties of the objects in its domain (or, thinking extensionally, of the sets objects).
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: The key point is that the domain is 'all' of the properties. How many properties does an object have. You need to decide whether you believe in sparse or abundant properties (I vote for very sparse indeed).
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A logical truth is the conclusion of a valid inference with no premisses [Read]
     Full Idea: Logical truth is a degenerate, or extreme, case of consequence. A logical truth is the conclusion of a valid inference with no premisses, or a proposition in the premisses of an argument which is unnecessary or may be suppressed.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' of a theory specifies interpreting a language in a domain to make all theorems true [Walicki]
     Full Idea: A specification of a domain of objects, and of the rules for interpreting the symbols of a logical language in this domain such that all the theorems of the logical theory are true is said to be a 'model' of the theory.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.1.3)
     A reaction: The basic ideas of this emerged 1915-30, but it needed Tarski's account of truth to really get it going.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Any first-order theory of sets is inadequate [Read]
     Full Idea: Any first-order theory of sets is inadequate because of the Löwenheim-Skolem-Tarski property, and the consequent Skolem paradox.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: The limitation is in giving an account of infinities.
The L-S Theorem says no theory (even of reals) says more than a natural number theory [Walicki]
     Full Idea: The L-S Theorem is ...a shocking result, since it implies that any consistent formal theory of everything - even about biology, physics, sets or the real numbers - can just as well be understood as being about natural numbers. It says nothing more.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2)
     A reaction: Illuminating. Particularly the point that no theory about the real numbers can say anything more than a theory about the natural numbers. So the natural numbers contain all the truths we can ever express? Eh?????
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axiomatic systems are purely syntactic, and do not presuppose any interpretation [Walicki]
     Full Idea: Axiomatic systems, their primitive terms and proofs, are purely syntactic, that is, do not presuppose any interpretation. ...[142] They never address the world directly, but address a possible semantic model which formally represents the world.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
A compact axiomatisation makes it possible to understand a field as a whole [Walicki]
     Full Idea: Having such a compact [axiomatic] presentation of a complicated field [such as Euclid's], makes it possible to relate not only to particular theorems but also to the whole field as such.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
5. Theory of Logic / K. Features of Logics / 6. Compactness
Compactness is when any consequence of infinite propositions is the consequence of a finite subset [Read]
     Full Idea: Classical logical consequence is compact, which means that any consequence of an infinite set of propositions (such as a theory) is a consequence of some finite subset of them.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
Compactness does not deny that an inference can have infinitely many premisses [Read]
     Full Idea: Compactness does not deny that an inference can have infinitely many premisses. It can; but classically, it is valid if and only if the conclusion follows from a finite subset of them.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
Compactness blocks the proof of 'for every n, A(n)' (as the proof would be infinite) [Read]
     Full Idea: Compact consequence undergenerates - there are intuitively valid consequences which it marks as invalid, such as the ω-rule, that if A holds of the natural numbers, then 'for every n, A(n)', but the proof of that would be infinite, for each number.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
Compactness makes consequence manageable, but restricts expressive power [Read]
     Full Idea: Compactness is a virtue - it makes the consequence relation more manageable; but it is also a limitation - it limits the expressive power of the logic.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: The major limitation is that wholly infinite proofs are not permitted, as in Idea 10977.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
Self-reference paradoxes seem to arise only when falsity is involved [Read]
     Full Idea: It cannot be self-reference alone that is at fault. Rather, what seems to cause the problems in the paradoxes is the combination of self-reference with falsity.
     From: Stephen Read (Thinking About Logic [1995], Ch.6)