Combining Texts

Ideas for 'teaching', 'Topics' and 'Modal Logics and Philosophy'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


3 ideas

5. Theory of Logic / B. Logical Consequence / 7. Strict Implication
Necessary implication is called 'strict implication'; if successful, it is called 'entailment' [Girle]
     Full Idea: Necessary implication is often called 'strict implication'. The sort of strict implication found in valid arguments, where the conjunction of the premises necessarily implies the conclusion, is often called 'entailment'.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.2)
     A reaction: These are basic concept for all logic.
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
If an argument is invalid, a truth tree will indicate a counter-example [Girle]
     Full Idea: The truth trees method for establishing the validity of arguments and formulas is easy to use, and has the advantage that if an argument or formula is not valid, then a counter-example can be retrieved from the tree.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.4)
5. Theory of Logic / L. Paradox / 2. Aporiai
Puzzles arise when reasoning seems equal on both sides [Aristotle]
     Full Idea: The equality of opposite reasonings is the cause of aporia; for it is when we reason on both [sides of a question] and it appears to us that everything can come about either way, that we are in a state of aporia about which of the two ways to take up.
     From: Aristotle (Topics [c.331 BCE], 145b17), quoted by Vassilis Politis - Aristotle and the Metaphysics 3.1
     A reaction: Other philosophers give up on the subject in this situation, but I love Aristotle because he takes this to be the place where philosophy begins.