Combining Texts

Ideas for 'German Philosophy: a very short introduction', 'On the Foundations of Logic and Arithmetic' and 'works'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


6 ideas

6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
Number cannot be defined as addition of ones, since that needs the number; it is a single act of abstraction [Fine,K on Leibniz]
     Full Idea: Leibniz's talk of the addition of ones cannot define number, since it cannot be specified how often they are added without using the number itself. Number must be an organic unity of ones, achieved by a single act of abstraction.
     From: comment on Gottfried Leibniz (works [1690]) by Kit Fine - Cantorian Abstraction: Recon. and Defence §1
     A reaction: I doubt whether 'abstraction' is the right word for this part of the process. It seems more like a 'gestalt'. The first point is clearly right, that it is the wrong way round if you try to define number by means of addition.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
The continuum is not divided like sand, but folded like paper [Leibniz, by Arthur,R]
     Full Idea: Leibniz said the division of the continuum should not be conceived 'to be like the division of sand into grains, but like that of a tunic or a sheet of paper into folds'.
     From: report of Gottfried Leibniz (works [1690], A VI iii 555) by Richard T.W. Arthur - Leibniz
     A reaction: This from the man who invented calculus. This thought might apply well to the modern physicist's concept of a 'field'.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
A tangent is a line connecting two points on a curve that are infinitely close together [Leibniz]
     Full Idea: We have only to keep in mind that to find a tangent means to draw a line that connects two points of a curve at an infinitely small distance.
     From: Gottfried Leibniz (works [1690]), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.1
     A reaction: [The quote can be tracked through Kitcher's footnote]
Nature uses the infinite everywhere [Leibniz]
     Full Idea: Nature uses the infinite in everything it does.
     From: Gottfried Leibniz (works [1690]), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.1
     A reaction: [The quote can be tracked through Kitcher's footnote] He seems to have had in mind the infinitely small.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The existence of an arbitrarily large number refutes the idea that numbers come from experience [Hilbert]
     Full Idea: The standpoint of pure experience seems to me to be refuted by the objection that the existence, possible or actual, of an arbitrarily large number can never be derived through experience, that is, through experiment.
     From: David Hilbert (On the Foundations of Logic and Arithmetic [1904], p.130)
     A reaction: Alternatively, empiricism refutes infinite numbers! No modern mathematician will accept that, but you wonder in what sense the proposed entities qualify as 'numbers'.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logic already contains some arithmetic, so the two must be developed together [Hilbert]
     Full Idea: In the traditional exposition of the laws of logic certain fundamental arithmetic notions are already used, for example in the notion of set, and to some extent also of number. Thus we turn in a circle, and a partly simultaneous development is required.
     From: David Hilbert (On the Foundations of Logic and Arithmetic [1904], p.131)
     A reaction: If the Axiom of Infinity is meant, it may be possible to purge the arithmetic from the logic. Then the challenge to derive arithmetic from it becomes rather tougher.