Combining Texts

Ideas for 'fragments/reports', 'System of Logic' and 'What Numbers Could Not Be'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


43 ideas

6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
There are no such things as numbers [Benacerraf]
     Full Idea: There are no such things as numbers.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: Mill said precisely the same (Idea 9794). I think I agree. There has been a classic error of reification. An abstract pattern is not an object. If I coin a word for all the three-digit numbers in our system, I haven't created a new 'object'.
Numbers can't be sets if there is no agreement on which sets they are [Benacerraf]
     Full Idea: The fact that Zermelo and Von Neumann disagree on which particular sets the numbers are is fatal to the view that each number is some particular set.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: I agree. A brilliantly simple argument. There is the possibility that one of the two accounts is correct (I would vote for Zermelo), but it is not actually possible to prove it.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Benacerraf says numbers are defined by their natural ordering [Benacerraf, by Fine,K]
     Full Idea: Benacerraf thinks of numbers as being defined by their natural ordering.
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965]) by Kit Fine - Cantorian Abstraction: Recon. and Defence §5
     A reaction: My intuition is that cardinality is logically prior to ordinality, since that connects better with the experienced physical world of objects. Just as the fact that people have different heights must precede them being arranged in height order.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
To understand finite cardinals, it is necessary and sufficient to understand progressions [Benacerraf, by Wright,C]
     Full Idea: Benacerraf claims that the concept of a progression is in some way the fundamental arithmetical notion, essential to understanding the idea of a finite cardinal, with a grasp of progressions sufficing for grasping finite cardinals.
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965]) by Crispin Wright - Frege's Concept of Numbers as Objects 3.xv
     A reaction: He cites Dedekind (and hence the Peano Axioms) as the source of this. The interest is that progression seems to be fundamental to ordianls, but this claims it is also fundamental to cardinals. Note that in the first instance they are finite.
A set has k members if it one-one corresponds with the numbers less than or equal to k [Benacerraf]
     Full Idea: Any set has k members if and only if it can be put into one-to-one correspondence with the set of numbers less than or equal to k.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: This is 'Ernie's' view of things in the paper. This defines the finite cardinal numbers in terms of the finite ordinal numbers. He has already said that the set of numbers is well-ordered.
To explain numbers you must also explain cardinality, the counting of things [Benacerraf]
     Full Idea: I would disagree with Quine. The explanation of cardinality - i.e. of the use of numbers for 'transitive counting', as I have called it - is part and parcel of the explication of number.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I n2)
     A reaction: Quine says numbers are just a progression, with transitive counting as a bonus. Interesting that Benacerraf identifies cardinality with transitive counting. I would have thought it was the possession of numerical quantity, not ascertaining it.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
Numbers must be assumed to have identical units, as horses are equalised in 'horse-power' [Mill]
     Full Idea: There is one hypothetical element in the basis of arithmetic, without which none of it would be true: all the numbers are numbers of the same or of equal units. When we talk of forty horse-power, we assume all horses are of equal strength.
     From: John Stuart Mill (System of Logic [1843], 2.6.3)
     A reaction: Of course, horses are not all of equal strength, so there is a problem here for your hard-line empiricist. Mill needs processes of idealisation and abstraction before his empirical arithmetic can get off the ground.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
We can count intransitively (reciting numbers) without understanding transitive counting of items [Benacerraf]
     Full Idea: Learning number words in the right order is counting 'intransitively'; using them as measures of sets is counting 'transitively'. ..It seems possible for someone to learn the former without learning the latter.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: Scruton's nice question (Idea 3907) is whether you could be said to understand numbers if you could only count intransitively. I would have thought such a state contained no understanding at all of numbers. Benacerraf agrees.
Someone can recite numbers but not know how to count things; but not vice versa [Benacerraf]
     Full Idea: It seems that it is possible for someone to learn to count intransitively without learning to count transitively. But not vice versa.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: Benacerraf favours the priority of the ordinals. It is doubtful whether you have grasped cardinality properly if you don't know how to count things. Could I understand 'he has 27 sheep', without understanding the system of natural numbers?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
The application of a system of numbers is counting and measurement [Benacerraf]
     Full Idea: The application of a system of numbers is counting and measurement.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: A simple point, but it needs spelling out. Counting seems prior, in experience if not in logic. Measuring is a luxury you find you can indulge in (by imagining your quantity) split into parts, once you have mastered counting.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The only axioms needed are for equality, addition, and successive numbers [Mill, by Shapiro]
     Full Idea: Mill says arithmetic has two axioms, that 'things which are equal to the same thing are equal to each other', and 'equals added to equals make equal sums', plus a definition for each numeral as 'formed by the addition of a unit to the previous number'.
     From: report of John Stuart Mill (System of Logic [1843], p.610?) by Stewart Shapiro - Thinking About Mathematics 4.3
     A reaction: The difficulty here seems to be the definition of 1, and (even worse for an empiricist), of 0. Then he may have a little trouble when he reaches infinity.
For Zermelo 3 belongs to 17, but for Von Neumann it does not [Benacerraf]
     Full Idea: Ernie's number progression is [φ],[φ,[φ]],[φ,[φ],[φ,[φ,[φ]]],..., whereas Johnny's is [φ],[[φ]],[[[φ]]],... For Ernie 3 belongs to 17, not for Johnny. For Ernie 17 has 17 members; for Johnny it has one.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: Benacerraf's point is that there is no proof-theoretic way to choose between them, though I am willing to offer my intuition that Ernie (Zermelo) gives the right account. Seventeen pebbles 'contains' three pebbles; you must pass 3 to count to 17.
The successor of x is either x and all its members, or just the unit set of x [Benacerraf]
     Full Idea: For Ernie, the successor of a number x was the set consisting of x and all the members of x, while for Johnny the successor of x was simply [x], the unit set of x - the set whose only member is x.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: See also Idea 9900. Benacerraf's famous point is that it doesn't seem to make any difference to arithmetic which version of set theory you choose as its basis. I take this to conclusively refute the idea that numbers ARE sets.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
Arithmetic is based on definitions, and Sums of equals are equal, and Differences of equals are equal [Mill]
     Full Idea: The inductions of arithmetic are based on so-called definitions (such as '2 and 1 are three'), and on two axioms: The sums of equals are equal, The differences of equals are equal.
     From: John Stuart Mill (System of Logic [1843], 2.6.3)
     A reaction: These are axioms for arithmetical operations, rather than for numbers themselves (which, for Mill, do not require axioms as they are empirically derived).
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Disputes about mathematical objects seem irrelevant, and mathematicians cannot resolve them [Benacerraf, by Friend]
     Full Idea: If two children were brought up knowing two different set theories, they could entirely agree on how to do arithmetic, up to the point where they discuss ontology. There is no mathematical way to tell which is the true representation of numbers.
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965]) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: Benacerraf ends by proposing a structuralist approach. If mathematics is consistent with conflicting set theories, then those theories are not shedding light on mathematics.
No particular pair of sets can tell us what 'two' is, just by one-to-one correlation [Benacerraf, by Lowe]
     Full Idea: Hume's Principle can't tell us what a cardinal number is (this is one lesson of Benacerraf's well-known problem). An infinity of pairs of sets could actually be the number two (not just the simplest sets).
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965]) by E.J. Lowe - The Possibility of Metaphysics 10.3
     A reaction: The drift here is for numbers to end up as being basic, axiomatic, indefinable, universal entities. Since I favour patterns as the basis of numbers, I think the basis might be in a pre-verbal experience, which even a bird might have, viewing its eggs.
If ordinal numbers are 'reducible to' some set-theory, then which is which? [Benacerraf]
     Full Idea: If a particular set-theory is in a strong sense 'reducible to' the theory of ordinal numbers... then we can still ask, but which is really which?
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIB)
     A reaction: A nice question about all reductions. If we reduce mind to brain, does that mean that brain is really just mind. To have a direction (up/down?), reduction must lead to explanation in a single direction only. Do numbers explain sets?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
If any recursive sequence will explain ordinals, then it seems to be the structure which matters [Benacerraf]
     Full Idea: If any recursive sequence whatever would do to explain ordinal numbers suggests that what is important is not the individuality of each element, but the structure which they jointly exhibit.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: This sentence launched the whole modern theory of Structuralism in mathematics. It is hard to see what properties a number-as-object could have which would entail its place in an ordinal sequence.
The job is done by the whole system of numbers, so numbers are not objects [Benacerraf]
     Full Idea: 'Objects' do not do the job of numbers singly; the whole system performs the job or nothing does. I therefore argue that numbers could not be objects at all.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: This thought is explored by structuralism - though it is a moot point where mere 'nodes' in a system (perhaps filled with old bits of furniture) will do the job either. No one ever explains the 'power' of numbers (felt when you do a sudoku). Causal?
The number 3 defines the role of being third in a progression [Benacerraf]
     Full Idea: Any object can play the role of 3; that is, any object can be the third element in some progression. What is peculiar to 3 is that it defines that role, not by being a paradigm, but by representing the relation of any third member of a progression.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: An interesting early attempt to spell out the structuralist idea. I'm thinking that the role is spelled out by the intersection of patterns which involve threes.
Number words no more have referents than do the parts of a ruler [Benacerraf]
     Full Idea: Questions of the identification of the referents of number words should be dismissed as misguided in just the way that a question about the referents of the parts of a ruler would be seen as misguided.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: What a very nice simple point. It would be very strange to insist that every single part of the continuum of a ruler should be regarded as an 'object'.
Mathematical objects only have properties relating them to other 'elements' of the same structure [Benacerraf]
     Full Idea: Mathematical objects have no properties other than those relating them to other 'elements' of the same structure.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], p.285), quoted by Fraser MacBride - Structuralism Reconsidered §3 n13
     A reaction: Suppose we only had one number - 13 - and we all cried with joy when we recognised it in a group of objects. Would that be a number, or just a pattern, or something hovering between the two?
How can numbers be objects if order is their only property? [Benacerraf, by Putnam]
     Full Idea: Benacerraf raises the question how numbers can be 'objects' if they have no properties except order in a particular ω-sequence.
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965], p.301) by Hilary Putnam - Mathematics without Foundations
     A reaction: Frege certainly didn't think that order was their only property (see his 'borehole' metaphor in Grundlagen). It might be better to say that they are objects which only have relational properties.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Number-as-objects works wholesale, but fails utterly object by object [Benacerraf]
     Full Idea: The identification of numbers with objects works wholesale but fails utterly object by object.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: This seems to be a glaring problem for platonists. You can stare at 1728 till you are blue in the face, but it only begins to have any properties at all once you examine its place in the system. This is unusual behaviour for an object.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Different parcels made from three pebbles produce different actual sensations [Mill]
     Full Idea: Three pebbles make different sense impressions in one parcel or in two. That the same pebbles by an alteration of place and arrangement may be made to produce either sensation is not the identical proposition.
     From: John Stuart Mill (System of Logic [1843], 2.6.2)
     A reaction: [compressed] Not quite clear, but Mill seems to be adamant that we really must experience the separation, and not just think what 'may' happen, so Frege is right that Mill is lucky that everything is not 'nailed down'.
'2 pebbles and 1 pebble' and '3 pebbles' name the same aggregation, but different facts [Mill]
     Full Idea: The expressions '2 pebbles and 1 pebble' and '3 pebbles' stand for the same aggregation of objects, but do not stand for the same physical fact. They name the same objects in different states, 'denoting' the same things, with different 'connotations'.
     From: John Stuart Mill (System of Logic [1843], 2.6.2)
     A reaction: Nothing in this would convert me from the analytic view to the empirical view of simple arithmetic, if I were that way inclined. Personally I think of three pebbles as 4 minus 1, because I am haunted by the thought of a missing stone.
3=2+1 presupposes collections of objects ('Threes'), which may be divided thus [Mill]
     Full Idea: 'Three is two and one' presupposes that collections of objects exist, which while they impress the senses thus, ¶¶¶, may be separated into two parts, thus, ¶¶ ¶. This being granted, we term all such parcels Threes.
     From: John Stuart Mill (System of Logic [1843], 2.6.2)
     A reaction: Mill is clearly in trouble here because he sticks to simple arithmetic. He must deal with parcels too big for humans to count, and parcels so big that they could not naturally exist, and that is before you even reach infinite parcels.
Numbers denote physical properties of physical phenomena [Mill]
     Full Idea: The fact asserted in the definition of a number is a physical fact. Each of the numbers two, three, four denotes physical phenomena, and connotes a physical property of those phenomena. Two denotes all pairs of things, and twelve all dozens.
     From: John Stuart Mill (System of Logic [1843], 3.24.5)
     A reaction: The least plausible part of Mill's thesis. Is the fact that a pair of things is fewer than five things also a property? You see two boots, or you see a pair of boots, depending partly on you. Is pure two a visible property? Courage and an onion?
We can't easily distinguish 102 horses from 103, but we could arrange them to make it obvious [Mill]
     Full Idea: 102 horses are not as easily distinguished from 103 as two are from three, yet the horses may be so placed that a difference will be perceptible.
     From: John Stuart Mill (System of Logic [1843], 3.24.5)
     A reaction: More trouble for Mill. We are now moving from the claim that we actually perceive numbers to the claim that we could if we arranged things right. But we would still only see which group of horses was bigger by one, not how many horses there were.
Arithmetical results give a mode of formation of a given number [Mill]
     Full Idea: Every statement of the result of an arithmetical operation is a statement of one of the modes of formation of a given number.
     From: John Stuart Mill (System of Logic [1843], 3.24.5)
     A reaction: Although Mill sticks cautiously to very simple arithmetic, inviting empirical accounts of much higher mathematics, I think the phrase 'modes of formation' of numbers is very helpful. It could take us either into structuralism, or into constructivism.
12 is the cube of 1728 means pebbles can be aggregated a certain way [Mill]
     Full Idea: When we say 12 is the cube of 1728, we affirm that if we had sufficient pebbles, we put them into parcels or aggregates called twelves, and put those twelves into similar collections, and make twelve of these largests parcels, we have the aggregate 1728.
     From: John Stuart Mill (System of Logic [1843], 3.24.5)
     A reaction: There is always hidden modal thinking in Mill's proposals, despite his longing to stick to actual experience. Imagination actually plays a much bigger role in his theory than sense experience does.
Numbers must be of something; they don't exist as abstractions [Mill]
     Full Idea: All numbers must be numbers of something: there are no such things as numbers in the abstract.
     From: John Stuart Mill (System of Logic [1843], p.245?), quoted by Stewart Shapiro - Thinking About Mathematics 4.3
     A reaction: This shows why the concept of 'abstraction' is such a deep problem. Numbers can't be properties of objects, because two boots can become one boot without changing the surviving boot. But why should abstractions have to 'exist'?
Mill says logic and maths is induction based on a very large number of instances [Mill, by Ayer]
     Full Idea: Mill maintained that the truths of logic and mathematics are not necessary or certain, by saying these propositions are inductive generalisations based on an extremely large number of instances.
     From: report of John Stuart Mill (System of Logic [1843]) by A.J. Ayer - Language,Truth and Logic Ch.4
     A reaction: Ayer asserts that they are necessary (but only because they are tautological). I like the idea that maths is the 'science of patterns', but that might lead from an empirical start to a rationalist belief in a priori synthetic truths.
If two black and two white objects in practice produced five, what colour is the fifth one? [Lewis,CI on Mill]
     Full Idea: If Mill has a demon who, every time two things are brought together with two other things, always introduces a fifth, then if two black marbles and two white ones are put in an urn, the demon could choose his color, but there would be more of one colour.
     From: comment on John Stuart Mill (System of Logic [1843]) by C.I. Lewis - A Pragmatic Conception of the A Priori p.367
     A reaction: Nice to see philosophers fighting back against demons. This is a lovely argument against the absurdity of thinking that experience could ever controvert a priori knowledge (though Lewis is no great fan of the latter).
Mill mistakes particular applications as integral to arithmetic, instead of general patterns [Dummett on Mill]
     Full Idea: Mill's mistake is taking particular applications as integral to the sense of arithmetical propositions. But what is integral to arithmetic is the general principle that explains its applicability, and determines the pattern of particular applications.
     From: comment on John Stuart Mill (System of Logic [1843], 2.6) by Michael Dummett - Frege philosophy of mathematics Ch.20
     A reaction: [Dummett is summarising Frege's view] Sounds like a tidy objection, but you still have to connect the general principles and patterns to the physical world. 'Structure' could be the magic word to achieve this.
There are no such things as numbers in the abstract [Mill]
     Full Idea: There are no such things as numbers in the abstract.
     From: John Stuart Mill (System of Logic [1843], 2.6.2)
     A reaction: Depends. Would we want to say that 'horses don't exist' (although each individual horse does exist)? It sounds odd to say of an idea that it doesn't exist, when you are currently thinking about it. I am, however, sympathetic to Mill.
Things possess the properties of numbers, as quantity, and as countable parts [Mill]
     Full Idea: All things possess quantity; consist of parts which can be numbered; and in that character possess all the properties which are called properties of numbers.
     From: John Stuart Mill (System of Logic [1843], 2.6.2)
     A reaction: Here Mill is skating on the very thinnest of ice, and I find myself reluctantly siding with Frege. It is a very optimistic empiricist who hopes to find the numbers actually occurring as properties of experienced objects. A pack of cards, for example.
Numbers have generalised application to entities (such as bodies or sounds) [Mill]
     Full Idea: 'Ten' must mean ten bodies, or ten sounds, or ten beatings of the pulse. But though numbers must be numbers of something, they may be numbers of anything.
     From: John Stuart Mill (System of Logic [1843], 2.6.2)
     A reaction: Mill always prefers things in close proximity, in space or time. 'I've had ten headaches in the last year'. 'There are ten reasons for doubting p'. His second point puts him very close to Aristotle in his view.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
Mill is too imprecise, and is restricted to simple arithmetic [Kitcher on Mill]
     Full Idea: The problem with Mill is that many of his formulations are imprecise, and he only considers the most rudimentary parts of arithmetic.
     From: comment on John Stuart Mill (System of Logic [1843]) by Philip Kitcher - The Nature of Mathematical Knowledge Intro
     A reaction: This is from a fan of Mill, trying to restore his approach in the face of the authoritative and crushing criticisms offered by Frege. I too am a fan of Mill's approach. Patterns can be discerned in arrangements of pebbles. Infinities are a problem.
Empirical theories of arithmetic ignore zero, limit our maths, and need probability to get started [Frege on Mill]
     Full Idea: Mill does not give us a clue as to how to understand the number zero, he limits our mathematical knowledge to the limits of our experience, ..and induction can only give you probability, but that presupposes arithmetical laws.
     From: comment on John Stuart Mill (System of Logic [1843]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations)
     A reaction: This summarises Frege's criticisms of Mill's empirical account of maths. I like 'maths is the science of patterns', in which case zero is just a late-introduced trick (it is hardly a Platonic Form!), and induction is the wrong account to give.
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Numbers are a very general property of objects [Mill, by Brown,JR]
     Full Idea: Mill held that numbers are a kind of very general property that objects possess.
     From: report of John Stuart Mill (System of Logic [1843], Ch.4) by James Robert Brown - Philosophy of Mathematics
     A reaction: Intuitively this sounds hopeless, because if you place one apple next to another you introduce 'two', but which apple has changed its property? Both? It seems to be a Cambridge change. It isn't a change that would bother the apples. Kitcher pursues this.
Number words are not predicates, as they function very differently from adjectives [Benacerraf]
     Full Idea: The unpredicative nature of number words can be seen by noting how different they are from, say, ordinary adjectives, which do function as predicates.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: He points out that 'x is seventeen' is a rare construction in English, unlike 'x is happy/green/interesting', and that numbers outrank all other adjectives (having to appear first in any string of them).
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
The set-theory paradoxes mean that 17 can't be the class of all classes with 17 members [Benacerraf]
     Full Idea: In no consistent theory is there a class of all classes with seventeen members. The existence of the paradoxes is a good reason to deny to 'seventeen' this univocal role of designating the class of all classes with seventeen members.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: This was Frege's disaster, and seems to block any attempt to achieve logicism by translating numbers into sets. It now seems unclear whether set theory is logic, or mathematics, or sui generis.