Combining Texts

Ideas for 'works', 'Grounding Concepts' and 'Letters to Hugo Boxel'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


4 ideas

6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Combining the concepts of negation and finiteness gives the concept of infinity [Jenkins]
     Full Idea: We might arrive to the concept of infinity by composing concepts of negation and finiteness.
     From: Carrie Jenkins (Grounding Concepts [2008], 5.3)
     A reaction: Presumably lots of concepts can be arrived at by negating prior concepts (such as not-wet, not-tall, not-loud, not-straight). So not-infinite is perfectly plausible, and is a far better account than some a priori intuition of pure infinity. Love it.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Arithmetic concepts are indispensable because they accurately map the world [Jenkins]
     Full Idea: The indispensability of arithmetical concepts is evidence that they do in fact accurately represent features of the independent world.
     From: Carrie Jenkins (Grounding Concepts [2008], Intro)
     A reaction: This seems to me to be by far the best account of the matter. So why is the world so arithmetical? Dunno, mate; ask someone else.
Senses produce concepts that map the world, and arithmetic is known through these concepts [Jenkins]
     Full Idea: I propose that arithmetical truths are known through an examination of our own arithmetical concepts; that basic arithmetical concepts map the arithmetical structure of the world; that the map obtains in virtue of our normal sensory apparatus.
     From: Carrie Jenkins (Grounding Concepts [2008], Pref)
     A reaction: She defends the nice but unusual position that arithmetical knowledge is both a priori and empirical (so that those two notions are not, as usually thought, opposed). I am a big Carrie Jenkins fan.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
It is not easy to show that Hume's Principle is analytic or definitive in the required sense [Jenkins]
     Full Idea: A problem for the neo-Fregeans is that it has not proved easy to establish that Hume's Principle is analytic or definitive in the required sense.
     From: Carrie Jenkins (Grounding Concepts [2008], 4.3)
     A reaction: It is also asked how we would know the principle, if it is indeed analytic or definitional (Jenkins p.119).