Combining Texts

Ideas for 'works', 'Logic in Mathematics' and 'W.V. Quine'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


4 ideas

6. Mathematics / A. Nature of Mathematics / 1. Mathematics
To create order in mathematics we need a full system, guided by patterns of inference [Frege]
     Full Idea: We cannot long remain content with the present fragmentation [of mathematics]. Order can be created only by a system. But to construct a system it is necessary that in any step forward we take we should be aware of the logical inferences involved.
     From: Gottlob Frege (Logic in Mathematics [1914], p.205)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The whole numbers are 'natural'; 'rational' numbers include fractions; the 'reals' include root-2 etc. [Orenstein]
     Full Idea: The 'natural' numbers are the whole numbers 1, 2, 3 and so on. The 'rational' numbers consist of the natural numbers plus the fractions. The 'real' numbers include the others, plus numbers such a pi and root-2, which cannot be expressed as fractions.
     From: Alex Orenstein (W.V. Quine [2002], Ch.2)
     A reaction: The 'irrational' numbers involved entities such as root-minus-1. Philosophical discussions in ontology tend to focus on the existence of the real numbers.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
If principles are provable, they are theorems; if not, they are axioms [Frege]
     Full Idea: If the law [of induction] can be proved, it will be included amongst the theorems of mathematics; if it cannot, it will be included amongst the axioms.
     From: Gottlob Frege (Logic in Mathematics [1914], p.203)
     A reaction: This links Frege with the traditional Euclidean view of axioms. The question, then, is how do we know them, given that we can't prove them.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
The logicists held that is-a-member-of is a logical constant, making set theory part of logic [Orenstein]
     Full Idea: The question to be posed is whether is-a-member-of should be considered a logical constant, that is, does logic include set theory. Frege, Russell and Whitehead held that it did.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: This is obviously the key element in the logicist programme. The objection seems to be that while first-order logic is consistent and complete, set theory is not at all like that, and so is part of a different world.