Combining Texts

Ideas for 'Unconscious Cerebral Initiative', 'Thinking About Logic' and 'What is a Law of Nature?'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


4 ideas

6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Infinite cuts and successors seems to suggest an actual infinity there waiting for us [Read]
     Full Idea: Every potential infinity seems to suggest an actual infinity - e.g. generating successors suggests they are really all there already; cutting the line suggests that the point where the cut is made is already in place.
     From: Stephen Read (Thinking About Logic [1995], Ch.8)
     A reaction: Finding a new gambit in chess suggests it was there waiting for us, but we obviously invented chess. Daft.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Although second-order arithmetic is incomplete, it can fully model normal arithmetic [Read]
     Full Idea: Second-order arithmetic is categorical - indeed, there is a single formula of second-order logic whose only model is the standard model ω, consisting of just the natural numbers, with all of arithmetic following. It is nevertheless incomplete.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: This is the main reason why second-order logic has a big fan club, despite the logic being incomplete (as well as the arithmetic).
Second-order arithmetic covers all properties, ensuring categoricity [Read]
     Full Idea: Second-order arithmetic can rule out the non-standard models (with non-standard numbers). Its induction axiom crucially refers to 'any' property, which gives the needed categoricity for the models.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / g. Von Neumann numbers
Von Neumann numbers are helpful, but don't correctly describe numbers [Read]
     Full Idea: The Von Neumann numbers have a structural isomorphism to the natural numbers - each number is the set of all its predecessors, so 2 is the set of 0 and 1. This helps proofs, but is unacceptable. 2 is not a set with two members, or a member of 3.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)