Combining Texts

Ideas for 'fragments/reports', 'Introduction to Mathematical Philosophy' and 'Examination of McTaggart's Philosophy'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


17 ideas

6. Mathematics / A. Nature of Mathematics / 2. Geometry
If straight lines were like ratios they might intersect at a 'gap', and have no point in common [Russell]
     Full Idea: We wish to say that when two straight lines cross each other they have a point in common, but if the series of points on a line were similar to the series of ratios, the two lines might cross in a 'gap' and have no point in common.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], X)
     A reaction: You can make a Dedekind Cut in the line of ratios (the rationals), so there must be gaps. I love this idea. We take for granted intersection at a point, but physical lines may not coincide. That abstract lines might fail also is lovely!
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
New numbers solve problems: negatives for subtraction, fractions for division, complex for equations [Russell]
     Full Idea: Every generalisation of number has presented itself as needed for some simple problem. Negative numbers are needed to make subtraction always possible; fractions to make division always possible; complex numbers to make solutions of equations possible.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VII)
     A reaction: Doesn't this rather suggest that we made them up? If new problems turn up, we'll invent another lot. We already have added 'surreal' numbers.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Could a number just be something which occurs in a progression? [Russell, by Hart,WD]
     Full Idea: Russell toyed with the idea that there is nothing to being a natural number beyond occurring in a progression
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919], p.8) by William D. Hart - The Evolution of Logic 5
     A reaction: How could you define a progression, without a prior access to numbers? - Arrange all the objects in the universe in ascending order of mass. Use scales to make the selection. Hence a finite progression, with no numbers!
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A series can be 'Cut' in two, where the lower class has no maximum, the upper no minimum [Russell]
     Full Idea: There is no maximum to the ratios whose square is less than 2, and no minimum to those whose square is greater than 2. This division of a series into two classes is called a 'Dedekind Cut'.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VII)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / j. Complex numbers
A complex number is simply an ordered couple of real numbers [Russell]
     Full Idea: A complex number may be regarded and defined as simply an ordered couple of real numbers
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VII)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
Discovering that 1 is a number was difficult [Russell]
     Full Idea: The discovery that 1 is a number must have been difficult.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], I)
     A reaction: Interesting that he calls it a 'discovery'. I am tempted to call it a 'decision'.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Numbers are needed for counting, so they need a meaning, and not just formal properties [Russell]
     Full Idea: We want our numbers to be such as can be used for counting common objects, and this requires that our numbers should have a definite meaning, not merely that they should have certain formal properties.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], I)
     A reaction: Why would just having certain formal properties be insufficient for counting? You just need an ordered series of unique items. It isn't just that we 'want' this. If you define something that we can't count with, you haven't defined numbers.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
The formal laws of arithmetic are the Commutative, the Associative and the Distributive [Russell]
     Full Idea: The usual formal laws of arithmetic are the Commutative Law [a+b=b+a and axb=bxa], the Associative Law [(a+b)+c=a+(b+c) and (axb)xc=ax(bxc)], and the Distributive Law [a(b+c)=ab+ac)].
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], IX)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Infinity and continuity used to be philosophy, but are now mathematics [Russell]
     Full Idea: The nature of infinity and continuity belonged in former days to philosophy, but belongs now to mathematics.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], Pref)
     A reaction: It is hard to disagree, since mathematicians since Cantor have revealed so much about infinite numbers (through set theory), but I think it remains an open question whether philosophers have anything distinctive to contribute.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The definition of order needs a transitive relation, to leap over infinite intermediate terms [Russell]
     Full Idea: Order must be defined by means of a transitive relation, since only such a relation is able to leap over an infinite number of intermediate terms. ...Without it we would not be able to define the order of magnitude among fractions.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], IV)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Any founded, non-repeating series all reachable in steps will satisfy Peano's axioms [Russell]
     Full Idea: Given any series which is endless, contains no repetitions, has a beginning, and has no terms that cannot be reached from the beginning in a finite number of steps, we have a set of terms verifying Peano's axioms.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], I)
'0', 'number' and 'successor' cannot be defined by Peano's axioms [Russell]
     Full Idea: That '0', 'number' and 'successor' cannot be defined by means of Peano's five axioms, but must be independently understood.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], I)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
A number is something which characterises collections of the same size [Russell]
     Full Idea: The number 3 is something which all trios have in common, and which distinguishes them from other collections. A number is something that characterises certain collections, namely, those that have that number.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
     A reaction: This is a verbal summary of the Fregean view of numbers, which marks the arrival of set theory as the way arithmetic will in future be characterised. The question is whether set theory captures all aspects of numbers. Does it give a tool for counting?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
What matters is the logical interrelation of mathematical terms, not their intrinsic nature [Russell]
     Full Idea: What matters in mathematics is not the intrinsic nature of our terms, but the logical nature of their interrelations.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VI)
     A reaction: If they have an instrinsic nature, that would matter far more, because that would dictate the interrelations. Structuralism seems to require that they don't actually have any intrinsic nature.
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Maybe numbers are adjectives, since 'ten men' grammatically resembles 'white men' [Russell]
     Full Idea: 'Ten men' is grammatically the same form as 'white men', so that 10 might be thought to be an adjective qualifying 'men'.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVIII)
     A reaction: The immediate problem, as Frege spotted, is that such expressions can be rephrased to remove the adjective (by saying 'the number of men is ten').
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
For Russell, numbers are sets of equivalent sets [Russell, by Benacerraf]
     Full Idea: Russell's own stand was that numbers are really only sets of equivalent sets.
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919]) by Paul Benacerraf - Logicism, Some Considerations (PhD) p.168
     A reaction: Benacerraf is launching a nice attack on this view, based on our inability to grasp huge numbers on this basis, or to see their natural order.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / e. Psychologism
There is always something psychological about inference [Russell]
     Full Idea: There is always unavoidably something psychological about inference.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XIV)
     A reaction: Glad to find Russell saying that. Only pure Fregeans dream of a logic that rises totally above the minds that think it. See Robert Hanna on the subject.