Combining Texts

Ideas for 'fragments/reports', 'Philosophy of Mathematics' and 'Individuals without Sortals'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


4 ideas

6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / d. Counting via concepts
Counting 'coin in this box' may have coin as the unit, with 'in this box' merely as the scope [Ayers]
     Full Idea: If we count the concept 'coin in this box', we could regard coin as the 'unit', while taking 'in this box' to limit the scope. Counting coins in two boxes would be not a difference in unit (kind of object), but in scope.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Counting')
     A reaction: This is a very nice alternative to the Fregean view of counting, depending totally on the concept, and rests more on a natural concept of object. I prefer Ayers. Compare 'count coins till I tell you to stop'.
If counting needs a sortal, what of things which fall under two sortals? [Ayers]
     Full Idea: If we accepted that counting objects always presupposes some sortal, it is surely clear that the class of objects to be counted could be designated by two sortals rather than one.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Realist' vii)
     A reaction: His nice example is an object which is both 'a single piece of wool' and a 'sweater', which had better not be counted twice. Wiggins struggles to argue that there is always one 'substance sortal' which predominates.
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
Computer proofs don't provide explanations [Horsten]
     Full Idea: Mathematicians are uncomfortable with computerised proofs because a 'good' proof should do more than convince us that a certain statement is true. It should also explain why the statement in question holds.
     From: Leon Horsten (Philosophy of Mathematics [2007], §5.3)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
The concept of 'ordinal number' is set-theoretic, not arithmetical [Horsten]
     Full Idea: The notion of an ordinal number is a set-theoretic, and hence non-arithmetical, concept.
     From: Leon Horsten (Philosophy of Mathematics [2007], §2.3)