Combining Texts

Ideas for 'fragments/reports', 'Recent Aesthetics in England and America' and 'Briefings on Existence'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


8 ideas

6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Numbers are for measuring and for calculating (and the two must be consistent) [Badiou]
     Full Idea: Number is an instance of measuring (distinguishing the more from the less, and calibrating data), ..and a figure for calculating (one counts with numbers), ..and it ought to be a figure of consistency (the compatibility of order and calculation).
     From: Alain Badiou (Briefings on Existence [1998], 11)
There is no single unified definition of number [Badiou]
     Full Idea: Apparently - and this is quite unlike old Greek times - there is no single unified definition of number.
     From: Alain Badiou (Briefings on Existence [1998], 11)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Each type of number has its own characteristic procedure of introduction [Badiou]
     Full Idea: There is a heterogeneity of introductory procedures of different classical number types: axiomatic for natural numbers, structural for ordinals, algebraic for negative and rational numbers, topological for reals, mainly geometric for complex numbers.
     From: Alain Badiou (Briefings on Existence [1998], 11)
Must we accept numbers as existing when they no longer consist of units? [Badiou]
     Full Idea: Do we have to confer existence on numbers whose principle is to no longer consist of units?
     From: Alain Badiou (Briefings on Existence [1998], 2)
     A reaction: This very nicely expresses what seems to me perhaps the most important question in the philosophy of mathematics. I am reluctant to accept such 'unitless' numbers, but I then feel hopelessly old-fashioned and naïve. What to do?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The undecidability of the Continuum Hypothesis may have ruined or fragmented set theory [Badiou]
     Full Idea: As we have known since Paul Cohen's theorem, the Continuum Hypothesis is intrinsically undecidable. Many believe Cohen's discovery has driven the set-theoretic project into ruin, or 'pluralized' what was once presented as a unified construct.
     From: Alain Badiou (Briefings on Existence [1998], 6)
     A reaction: Badiou thinks the theorem completes set theory, by (roughly) finalising its map.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
If mathematics is a logic of the possible, then questions of existence are not intrinsic to it [Badiou]
     Full Idea: If mathematics is a logic of the possible, then questions of existence are not intrinsic to it (as they are for the Platonist).
     From: Alain Badiou (Briefings on Existence [1998], 7)
     A reaction: See also Idea 12328. I file this to connect it with Hellman's modal (and nominalist) version of structuralism. Could it be that mathematics and modal logic are identical?
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Platonists like axioms and decisions, Aristotelians like definitions, possibilities and logic [Badiou]
     Full Idea: A Platonist's interest focuses on axioms in which the decision of thought is played out, where an Aristotelian or Leibnizian interest focuses on definitions laying out the representation of possibilities (...and the essence of mathematics is logic).
     From: Alain Badiou (Briefings on Existence [1998], 7)
     A reaction: See Idea 12323 for the significance of the Platonist approach. So logicism is an Aristotelian project? Frege is not a true platonist? I like the notion of 'the representation of possibilities', so will vote for the Aristotelians, against Badiou.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logic is definitional, but real mathematics is axiomatic [Badiou]
     Full Idea: Logic is definitional, whereas real mathematics is axiomatic.
     From: Alain Badiou (Briefings on Existence [1998], 10)