Combining Texts

Ideas for 'fragments/reports', 'The Philosophy of Mathematics' and 'Universal Arithmetick'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


3 ideas

6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Ordinals seem more basic than cardinals, since we count objects in sequence [Dummett]
     Full Idea: It can be argued that the notion of ordinal numbers is more fundamental than that of cardinals. To count objects, we must count them in sequence. ..The theory of ordinals forms the substratum of Cantor's theory of cardinals.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 5)
     A reaction: Depends what you mean by 'fundamental'. I would take cardinality to be psychologically prior ('that is a lot of sheep'). You can't order people by height without first acquiring some people with differing heights. I vote for cardinals.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
A number is not a multitude, but a unified ratio between quantities [Newton]
     Full Idea: By a Number we understand not so much a Multitude of Unities, as the abstracted Ratio of any Quantity to another Quantity of the same Kind, which we take for unity.
     From: Isaac Newton (Universal Arithmetick [1669]), quoted by John Mayberry - What Required for Foundation for Maths? p.407-2
     A reaction: This needs a metaphysics of 'kinds' (since lines can't have ratios with solids). Presumably Newton wants the real numbers to be more basic than the natural numbers. This is the transition from Greek to modern.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The number 4 has different positions in the naturals and the wholes, with the same structure [Dummett]
     Full Idea: The number 4 cannot be characterized solely by its position in a system, because it has different positions in the system of natural numbers and that of the positive whole numbers, whereas these systems have the very same structure.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 6.1)
     A reaction: Dummett seems to think this is fairly decisive against structuralism. There is also the structure of the real numbers. We will solve this by saying that the wholes are abstracted from the naturals, which are abstracted from the reals. Job done.