Combining Texts

Ideas for 'Commentary on 'De Anima'', 'Introducing the Philosophy of Mathematics' and 'The Question of Ontology'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


7 ideas

6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
It is plausible that x^2 = -1 had no solutions before complex numbers were 'introduced' [Fine,K]
     Full Idea: It is not implausible that before the 'introduction' of complex numbers, it would have been incorrect for mathematicians to claim that there was a solution to the equation 'x^2 = -1' under a completely unrestricted understanding of 'there are'.
     From: Kit Fine (The Question of Ontology [2009])
     A reaction: I have adopted this as the crucial test question for anyone's attitude to platonism in mathematics. I take it as obvious that complex numbers were simply invented so that such equations could be dealt with. They weren't 'discovered'!
The big problem for platonists is epistemic: how do we perceive, intuit, know or detect mathematical facts? [Friend]
     Full Idea: The main philosophical problem with the position of platonism or realism is the epistemic problem: of explaining what perception or intuition consists in; how it is possible that we should accurately detect whatever it is we are realists about.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.5)
     A reaction: The best bet, I suppose, is that the mind directly perceives concepts just as eyes perceive the physical (see Idea 8679), but it strikes me as implausible. If we have to come up with a special mental faculty for an area of knowledge, we are in trouble.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
The indispensability argument shows that nature is non-numerical, not the denial of numbers [Fine,K]
     Full Idea: Arguments such as the dispensability argument are attempting to show something about the essentially non-numerical character of physical reality, rather than something about the nature or non-existence of the numbers themselves.
     From: Kit Fine (The Question of Ontology [2009], p.160)
     A reaction: This is aimed at Hartry Field. If Quine was right, and we only believe in numbers because of our science, and then Field shows our science doesn't need it, then Fine would be wrong. Quine must be wrong, as well as Field.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Mathematics should be treated as true whenever it is indispensable to our best physical theory [Friend]
     Full Idea: Central to naturalism about mathematics are 'indispensability arguments', to the effect that some part of mathematics is indispensable to our best physical theory, and therefore we ought to take that part of mathematics to be true.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 6.1)
     A reaction: Quine and Putnam hold this view; Field challenges it. It has the odd consequence that the dispensable parts (if they can be identified!) do not need to be treated as true (even though they might follow logically from the dispensable parts!). Wrong!
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Formalism is unconstrained, so cannot indicate importance, or directions for research [Friend]
     Full Idea: There are not enough constraints in the Formalist view of mathematics, so there is no way to select a direction for trying to develop mathematics. There is no part of mathematics that is more important than another.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 6.6)
     A reaction: One might reply that an area of maths could be 'important' if lots of other areas depended on it, and big developments would ripple big changes through the interior of the subject. Formalism does, though, seem to reduce maths to a game.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Constructivism rejects too much mathematics [Friend]
     Full Idea: Too much of mathematics is rejected by the constructivist.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.1)
     A reaction: This was Hilbert's view. This seems to be generally true of verificationism. My favourite example is that legitimate speculations can be labelled as meaningless.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionists typically retain bivalence but reject the law of excluded middle [Friend]
     Full Idea: An intuitionist typically retains bivalence, but rejects the law of excluded middle.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.2)
     A reaction: The idea would be to say that only T and F are available as truth-values, but failing to be T does not ensure being F, but merely not-T. 'Unproven' is not-T, but may not be F.