Combining Texts

Ideas for 'Mahaprajnaparamitashastra', 'Mathematical logic and theory of types' and 'Frege philosophy of mathematics'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


14 ideas

6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
A prime number is one which is measured by a unit alone [Dummett]
     Full Idea: A prime number is one which is measured by a unit alone.
     From: Michael Dummett (Frege philosophy of mathematics [1991], 7 Def 11)
     A reaction: We might say that the only way of 'reaching' or 'constructing' a prime is by incrementing by one till you reach it. That seems a pretty good definition. 64, for example, can be reached by a large number of different routes.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Addition of quantities is prior to ordering, as shown in cyclic domains like angles [Dummett]
     Full Idea: It is essential to a quantitative domain of any kind that there should be an operation of adding its elements; that this is more fundamental thaat that they should be linearly ordered by magnitude is apparent from cyclic domains like that of angles.
     From: Michael Dummett (Frege philosophy of mathematics [1991], 22 'Quantit')
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
A number is a multitude composed of units [Dummett]
     Full Idea: A number is a multitude composed of units.
     From: Michael Dummett (Frege philosophy of mathematics [1991], 7 Def 2)
     A reaction: This is outdated by the assumption that 0 and 1 are also numbers, but if we say one is really just the 'unit' which is preliminary to numbers, and 0 is as bogus a number as i is, we might stick with the original Greek distinction.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / e. Counting by correlation
We understand 'there are as many nuts as apples' as easily by pairing them as by counting them [Dummett]
     Full Idea: A child understands 'there are just as many nuts as apples' as easily by pairing them off as by counting them.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.12)
     A reaction: I find it very intriguing that you could know that two sets have the same number, without knowing any numbers. Is it like knowing two foreigners spoke the same words, without understanding them? Or is 'equinumerous' conceptually prior to 'number'?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The identity of a number may be fixed by something outside structure - by counting [Dummett]
     Full Idea: The identity of a mathematical object may sometimes be fixed by its relation to what lies outside the structure to which it belongs. It is more fundamental to '3' that if certain objects are counted, there are three of them.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 5)
     A reaction: This strikes me as Dummett being pushed (by his dislike of the purely abstract picture given by structuralism) back to a rather empiricist and physical view of numbers, though he would totally deny that.
Numbers aren't fixed by position in a structure; it won't tell you whether to start with 0 or 1 [Dummett]
     Full Idea: The number 0 is not differentiated from 1 by its position in a progression, otherwise there would be no difference between starting with 0 and starting with 1. That is enough to show that numbers are not identifiable just as positions in structures.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 5)
     A reaction: This sounds conclusive, but doesn't feel right. If numbers are a structure, then where you 'start' seems unimportant. Where do you 'start' in St Paul's Cathedral? Starting sounds like a constructivist concept for number theory.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Type theory seems an extreme reaction, since self-exemplification is often innocuous [Swoyer on Russell]
     Full Idea: Russell's reaction to his paradox (by creating his theory of types) seems extreme, because many cases of self-exemplification are innocuous. The property of being a property is itself a property.
     From: comment on Bertrand Russell (Mathematical logic and theory of types [1908]) by Chris Swoyer - Properties 7.5
     A reaction: Perhaps it is not enough that 'many cases' are innocuous. We are starting from philosophy of mathematics, where precision is essentially. General views about properties come later.
Russell's improvements blocked mathematics as well as paradoxes, and needed further axioms [Russell, by Musgrave]
     Full Idea: Unfortunately, Russell's new logic, as well as preventing the deduction of paradoxes, also prevented the deduction of mathematics, so he supplemented it with additional axioms, of Infinity, of Choice, and of Reducibility.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by Alan Musgrave - Logicism Revisited §2
     A reaction: The first axiom seems to be an empirical hypothesis, and the second has turned out to be independent of logic and set theory.
Type theory means that features shared by different levels cannot be expressed [Morris,M on Russell]
     Full Idea: Russell's theory of types avoided the paradoxes, but it had the result that features common to different levels of the hierarchy become uncapturable (since any attempt to capture them would involve a predicate which disobeyed the hierarchy restrictions).
     From: comment on Bertrand Russell (Mathematical logic and theory of types [1908]) by Michael Morris - Guidebook to Wittgenstein's Tractatus 2H
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Ramified types can be defended as a system of intensional logic, with a 'no class' view of sets [Russell, by Linsky,B]
     Full Idea: A defence of the ramified theory of types comes in seeing it as a system of intensional logic which includes the 'no class' account of sets, and indeed the whole development of mathematics, as just a part.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by Bernard Linsky - Russell's Metaphysical Logic 6.1
     A reaction: So Linsky's basic project is to save logicism, by resting on intensional logic (rather than extensional logic and set theory). I'm not aware that Linsky has acquired followers for this. Maybe Crispin Wright has commented?
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Set theory isn't part of logic, and why reduce to something more complex? [Dummett]
     Full Idea: The two frequent modern objects to logicism are that set theory is not part of logic, or that it is of no interest to 'reduce' a mathematical theory to another, more complex, one.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.18)
     A reaction: Dummett says these are irrelevant (see context). The first one seems a good objection. The second one less so, because whether something is 'complex' is a quite different issue from whether it is ontologically more fundamental.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
A set does not exist unless at least one of its specifications is predicative [Russell, by Bostock]
     Full Idea: The idea is that the same set may well have different canonical specifications, i.e. there may be different ways of stating its membership conditions, and so long as one of these is predicative all is well. If none are, the supposed set does not exist.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by David Bostock - Philosophy of Mathematics 8.1
Russell is a conceptualist here, saying some abstracta only exist because definitions create them [Russell, by Bostock]
     Full Idea: It is a conceptualist approach that Russell is relying on. ...The view is that some abstract objects ...exist only because they are definable. It is the definition that would (if permitted) somehow bring them into existence.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by David Bostock - Philosophy of Mathematics 8.1
     A reaction: I'm suddenly thinking that predicativism is rather interesting. Being of an anti-platonist persuasion about abstract 'objects', I take some story about how we generate them to be needed. Psychological abstraction seems right, but a bit vague.
Vicious Circle says if it is expressed using the whole collection, it can't be in the collection [Russell, by Bostock]
     Full Idea: The Vicious Circle Principle says, roughly, that whatever involves, or presupposes, or is only definable in terms of, all of a collection cannot itself be one of the collection.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908], p.63,75) by David Bostock - Philosophy of Mathematics 8.1
     A reaction: This is Bostock's paraphrase of Russell, because Russell never quite puts it clearly. The response is the requirement to be 'predicative'. Bostock emphasises that it mainly concerns definitions. The Principle 'always leads to hierarchies'.