Combining Texts

Ideas for 'Mahaprajnaparamitashastra', 'What Required for Foundation for Maths?' and 'Principia Mathematica'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


24 ideas

6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
     Full Idea: We eliminate the real numbers by giving an axiomatic definition of the species of complete ordered fields. These axioms are categorical (mutually isomorphic), and thus are mathematically indistinguishable.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: Hence my clever mathematical friend says that it is a terrible misunderstanding to think that mathematics is about numbers. Mayberry says the reals are one ordered field, but mathematics now studies all ordered fields together.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A real number is the class of rationals less than the number [Russell/Whitehead, by Shapiro]
     Full Idea: For Russell the real number 2 is the class of rationals less than 2 (i.e. 2/1). ...Notice that on this definition, real numbers are classes of rational numbers.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Stewart Shapiro - Thinking About Mathematics 5.2
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
     Full Idea: Quantities for Greeks were concrete things - lines, surfaces, solids, times, weights. At the centre of their science of quantity was the beautiful theory of ratio and proportion (...in which the notion of number does not appear!).
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
     A reaction: [He credits Eudoxus, and cites Book V of Euclid]
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
     Full Idea: The abstract objects of modern mathematics, the real numbers, were invented by the mathematicians of the seventeenth century in order to simplify and to generalize the Greek science of quantity.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
     Full Idea: In Cantor's new vision, the infinite, the genuine infinite, does not disappear, but presents itself in the guise of the absolute, as manifested in the species of all sets or the species of all ordinal numbers.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
     Full Idea: We may describe Cantor's achievement by saying, not that he tamed the infinite, but that he extended the finite.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
     Full Idea: If we grant, as surely we must, the central importance of proof and definition, then we must also grant that mathematics not only needs, but in fact has, foundations.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
     Full Idea: The ultimate principles upon which mathematics rests are those to which mathematicians appeal without proof; and the primitive concepts of mathematics ...themselves are grasped directly, if grasped at all, without the mediation of definition.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
     A reaction: This begs the question of whether the 'grasping' is purely a priori, or whether it derives from experience. I defend the latter, and Jenkins puts the case well.
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
     Full Idea: An account of the foundations of mathematics must specify four things: the primitive concepts for use in definitions, the rules governing definitions, the ultimate premises of proofs, and rules allowing advance from premises to conclusions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
     Full Idea: No axiomatic theory, formal or informal, of first or of higher order can logically play a foundational role in mathematics. ...It is obvious that you cannot use the axiomatic method to explain what the axiomatic method is.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
     Full Idea: The sole theoretical interest of first-order Peano arithmetic derives from the fact that it is a first-order reduct of a categorical second-order theory. Its axioms can be proved incomplete only because the second-order theory is categorical.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
     Full Idea: If we did not know that the second-order axioms characterise the natural numbers up to isomorphism, we should have no reason to suppose, a priori, that first-order Peano Arithmetic should be complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / a. Defining numbers
Russell takes numbers to be classes, but then reduces the classes to numerical quantifiers [Russell/Whitehead, by Bostock]
     Full Idea: Although Russell takes numbers to be certain classes, his 'no-class' theory then eliminates all mention of classes in favour of the 'propositional functions' that define them; and in the case of the numbers these just are the numerical quantifiers.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by David Bostock - Philosophy of Mathematics 9.B.4
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
     Full Idea: The idea that set theory must simply be identified with first-order Zermelo-Fraenkel is surprisingly widespread. ...The first-order axiomatic theory of sets is clearly inadequate as a foundation of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-2)
     A reaction: [He is agreeing with a quotation from Skolem].
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
     Full Idea: One does not have to translate 'ordinary' mathematics into the Zermelo-Fraenkel system: ordinary mathematics comes embodied in that system.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-1)
     A reaction: Mayberry seems to be a particular fan of set theory as spelling out the underlying facts of mathematics, though it has to be second-order.
Set theory is not just another axiomatised part of mathematics [Mayberry]
     Full Idea: The fons et origo of all confusion is the view that set theory is just another axiomatic theory and the universe of sets just another mathematical structure. ...The universe of sets ...is the world that all mathematical structures inhabit.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.416-1)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Russell and Whitehead took arithmetic to be higher-order logic [Russell/Whitehead, by Hodes]
     Full Idea: Russell and Whitehead took arithmetic to be higher-order logic, ..and came close to identifying numbers with numerical quantifiers.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Harold Hodes - Logicism and Ontological Commits. of Arithmetic p.148
     A reaction: The point here is 'higher-order'.
Russell and Whitehead were not realists, but embraced nearly all of maths in logic [Russell/Whitehead, by Friend]
     Full Idea: Unlike Frege, Russell and Whitehead were not realists about mathematical objects, and whereas Frege thought that only arithmetic and analysis are branches of logic, they think the vast majority of mathematics (including geometry) is essentially logical.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Michčle Friend - Introducing the Philosophy of Mathematics 3.1
     A reaction: If, in essence, Descartes reduced geometry to algebra (by inventing co-ordinates), then geometry ought to be included. It is characteristic of Russell's hubris to want to embrace everything.
'Principia' lacks a precise statement of the syntax [Gödel on Russell/Whitehead]
     Full Idea: What is missing, above all, in 'Principia', is a precise statement of the syntax of the formalism.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by Kurt Gödel - Russell's Mathematical Logic p.448
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
The ramified theory of types used propositional functions, and covered bound variables [Russell/Whitehead, by George/Velleman]
     Full Idea: Russell and Whitehead's ramified theory of types worked not with sets, but with propositional functions (similar to Frege's concepts), with a more restrictive assignment of variables, insisting that bound, as well as free, variables be of lower type.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.3
     A reaction: I don't fully understand this (and no one seems much interested any more), but I think variables are a key notion, and there is something interesting going on here. I am intrigued by ordinary language which behaves like variables.
The Russell/Whitehead type theory was limited, and was not really logic [Friend on Russell/Whitehead]
     Full Idea: The Russell/Whitehead type theory reduces mathematics to a consistent founding discipline, but is criticised for not really being logic. They could not prove the existence of infinite sets, and introduced a non-logical 'axiom of reducibility'.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913]) by Michčle Friend - Introducing the Philosophy of Mathematics 3.6
     A reaction: To have reduced most of mathematics to a founding discipline sounds like quite an achievement, and its failure to be based in pure logic doesn't sound too bad. However, it seems to reduce some maths to just other maths.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
In 'Principia Mathematica', logic is exceeded in the axioms of infinity and reducibility, and in the domains [Bernays on Russell/Whitehead]
     Full Idea: In the system of 'Principia Mathematica', it is not only the axioms of infinity and reducibility which go beyond pure logic, but also the initial conception of a universal domain of individuals and of a domain of predicates.
     From: comment on B Russell/AN Whitehead (Principia Mathematica [1913], p.267) by Paul Bernays - On Platonism in Mathematics p.267
     A reaction: This sort of criticism seems to be the real collapse of the logicist programme, rather than Russell's paradox, or Gödel's Incompleteness Theorems. It just became impossible to stick strictly to logic in the reduction of arithmetic.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Russell and Whitehead consider the paradoxes to indicate that we create mathematical reality [Russell/Whitehead, by Friend]
     Full Idea: Russell and Whitehead are particularly careful to avoid paradox, and consider the paradoxes to indicate that we create mathematical reality.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Michčle Friend - Introducing the Philosophy of Mathematics 3.1
     A reaction: This strikes me as quite a good argument. It is certainly counterintuitive that reality, and abstractions from reality, would contain contradictions. The realist view would be that we have paradoxes because we have misdescribed the facts.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
To avoid vicious circularity Russell produced ramified type theory, but Ramsey simplified it [Russell/Whitehead, by Shapiro]
     Full Idea: Russell insisted on the vicious circle principle, and thus rejected impredicative definitions, which resulted in an unwieldy ramified type theory, with the ad hoc axiom of reducibility. Ramsey's simpler theory was impredicative and avoided the axiom.
     From: report of B Russell/AN Whitehead (Principia Mathematica [1913]) by Stewart Shapiro - Thinking About Mathematics 5.2
     A reaction: Nowadays the theory of types seems to have been given up, possibly because it has no real attraction if it lacks the strict character which Russell aspired to.