Combining Texts

Ideas for 'On the Question of Absolute Undecidability', 'Of the First Principles of Government' and 'Principles of Arithmetic, by a new method'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


8 ideas

6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
All models of Peano axioms are isomorphic, so the models all seem equally good for natural numbers [Cartwright,R on Peano]
     Full Idea: Peano's axioms are categorical (any two models are isomorphic). Some conclude that the concept of natural number is adequately represented by them, but we cannot identify natural numbers with one rather than another of the isomorphic models.
     From: comment on Giuseppe Peano (Principles of Arithmetic, by a new method [1889], 11) by Richard Cartwright - Propositions 11
     A reaction: This is a striking anticipation of Benacerraf's famous point about different set theory accounts of numbers, where all models seem to work equally well. Cartwright is saying that others have pointed this out.
PA concerns any entities which satisfy the axioms [Peano, by Bostock]
     Full Idea: Peano Arithmetic is about any system of entities that satisfies the Peano axioms.
     From: report of Giuseppe Peano (Principles of Arithmetic, by a new method [1889], 6.3) by David Bostock - Philosophy of Mathematics 6.3
     A reaction: This doesn't sound like numbers in the fullest sense, since those should facilitate counting objects. '3' should mean that number of rose petals, and not just a position in a well-ordered series.
Peano axioms not only support arithmetic, but are also fairly obvious [Peano, by Russell]
     Full Idea: Peano's premises are recommended not only by the fact that arithmetic follows from them, but also by their inherent obviousness.
     From: report of Giuseppe Peano (Principles of Arithmetic, by a new method [1889], p.276) by Bertrand Russell - Regressive Method for Premises in Mathematics p.276
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
We can add Reflexion Principles to Peano Arithmetic, which assert its consistency or soundness [Halbach on Peano]
     Full Idea: Peano Arithmetic cannot derive its own consistency from within itself. But it can be strengthened by adding this consistency statement or by stronger axioms (particularly ones partially expressing soundness). These are known as Reflexion Principles.
     From: comment on Giuseppe Peano (Principles of Arithmetic, by a new method [1889], 1.2) by Volker Halbach - Axiomatic Theories of Truth (2005 ver) 1.2
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Arithmetic can have even simpler logical premises than the Peano Axioms [Russell on Peano]
     Full Idea: Peano's premises are not the ultimate logical premises of arithmetic. Simpler premises and simpler primitive ideas are to be had by carrying our analysis on into symbolic logic.
     From: comment on Giuseppe Peano (Principles of Arithmetic, by a new method [1889], p.276) by Bertrand Russell - Regressive Method for Premises in Mathematics p.276