Combining Texts

Ideas for 'On the Question of Absolute Undecidability', 'works' and 'The Pragmatist Account of Truth'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


7 ideas

6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
Number cannot be defined as addition of ones, since that needs the number; it is a single act of abstraction [Fine,K on Leibniz]
     Full Idea: Leibniz's talk of the addition of ones cannot define number, since it cannot be specified how often they are added without using the number itself. Number must be an organic unity of ones, achieved by a single act of abstraction.
     From: comment on Gottfried Leibniz (works [1690]) by Kit Fine - Cantorian Abstraction: Recon. and Defence §1
     A reaction: I doubt whether 'abstraction' is the right word for this part of the process. It seems more like a 'gestalt'. The first point is clearly right, that it is the wrong way round if you try to define number by means of addition.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
The continuum is not divided like sand, but folded like paper [Leibniz, by Arthur,R]
     Full Idea: Leibniz said the division of the continuum should not be conceived 'to be like the division of sand into grains, but like that of a tunic or a sheet of paper into folds'.
     From: report of Gottfried Leibniz (works [1690], A VI iii 555) by Richard T.W. Arthur - Leibniz
     A reaction: This from the man who invented calculus. This thought might apply well to the modern physicist's concept of a 'field'.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
A tangent is a line connecting two points on a curve that are infinitely close together [Leibniz]
     Full Idea: We have only to keep in mind that to find a tangent means to draw a line that connects two points of a curve at an infinitely small distance.
     From: Gottfried Leibniz (works [1690]), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.1
     A reaction: [The quote can be tracked through Kitcher's footnote]
Nature uses the infinite everywhere [Leibniz]
     Full Idea: Nature uses the infinite in everything it does.
     From: Gottfried Leibniz (works [1690]), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.1
     A reaction: [The quote can be tracked through Kitcher's footnote] He seems to have had in mind the infinitely small.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)