Combining Texts

Ideas for 'On the Question of Absolute Undecidability', 'In Praed.' and 'Prolegomena to Any Future Metaphysic'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


11 ideas

6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics cannot proceed just by the analysis of concepts [Kant]
     Full Idea: Mathematics cannot proceed analytically, namely by analysis of concepts, but only synthetically.
     From: Immanuel Kant (Prolegomena to Any Future Metaphysic [1781], 284)
     A reaction: I'm with Kant insofar as I take mathematics to be about the world, no matter how rarefied and 'abstract' it may become.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Geometry is not analytic, because a line's being 'straight' is a quality [Kant]
     Full Idea: No principle of pure geometry is analytic. That the straight line beween two points is the shortest is a synthetic proposition. For my concept of straight contains nothing of quantity but only of quality.
     From: Immanuel Kant (Prolegomena to Any Future Metaphysic [1781], 269)
     A reaction: I'm not sure what his authority is for calling straightness a quality rather than a quantity, given that it can be expressed quantitatively. It is a very nice example for focusing our questions about the nature of geometry. I can't decide.
Geometry rests on our intuition of space [Kant]
     Full Idea: Geometry is grounded on the pure intuition of space.
     From: Immanuel Kant (Prolegomena to Any Future Metaphysic [1781], 284)
     A reaction: I have the impression that recent thinkers are coming round to this idea, having attempted purely algebraic or logical accounts of geometry.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Numbers are formed by addition of units in time [Kant]
     Full Idea: Arithmetic forms its own concepts of numbers by successive addition of units in time.
     From: Immanuel Kant (Prolegomena to Any Future Metaphysic [1781], 284)
     A reaction: It is hard to imagine any modern philosopher of mathematics embracing this idea. It sounds as if Kant thinks counting is the foundation of arithmetic, which I quite like.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
7+5 = 12 is not analytic, because no analysis of 7+5 will reveal the concept of 12 [Kant]
     Full Idea: The concept of twelve is in no way already thought by merely thinking the unification of seven and five, and though I analyse my concept of such a possible sum as long as I please, I shall never find twelve in it.
     From: Immanuel Kant (Prolegomena to Any Future Metaphysic [1781], 269)
     A reaction: It might be more plausible to claim that an analysis of 12 would reveal the concept of 7+5. Doesn't the concept of two collections of objects contain the concept of their combined cardinality?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Mathematics can only start from an a priori intuition which is not empirical but pure [Kant]
     Full Idea: We find that all mathematical knowledge has this peculiarity, that it must first exhibit its concept in intuition, and do so a priori, in an intuition that is not empirical but pure.
     From: Immanuel Kant (Prolegomena to Any Future Metaphysic [1781], 281)
     A reaction: Later thinkers had grave doubts about this Kantian 'intuition', even if they though maths was known a priori. Personally I am increasing fan of rational intuition, even if I am not sure how to discern whether it is rational on any occasion.
All necessary mathematical judgements are based on intuitions of space and time [Kant]
     Full Idea: Space and time are the two intuitions on which pure mathematics grounds all its cognitions and judgements that present themselves as at once apodictic and necessary.
     From: Immanuel Kant (Prolegomena to Any Future Metaphysic [1781], 284)
     A reaction: This unlikely proposal seems to be based on the idea that mathematics must arise from the basic categories of our intuition, and these two are the best candidates he can find. I would say that high-level generality is the basis of mathematics.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
Mathematics cannot be empirical because it is necessary, and that has to be a priori [Kant]
     Full Idea: Mathematical propositions are always judgements a priori, and not empirical, because they carry with them necessity, which cannot be taken from experience.
     From: Immanuel Kant (Prolegomena to Any Future Metaphysic [1781], 268)
     A reaction: Presumably there are necessities in the physical world, and we might discern them by generalising about that world, so that mathematics is (by a tortuous abstract route) a posteriori necessary? Just a thought…