Combining Texts

Ideas for 'On the Question of Absolute Undecidability', 'Mathematics, Science and Language' and 'The Language of Morals'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


5 ideas

6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is a mental activity which does not use language [Brouwer, by Bostock]
     Full Idea: Brouwer made the rather extraordinary claim that mathematics is a mental activity which uses no language.
     From: report of Luitzen E.J. Brouwer (Mathematics, Science and Language [1928]) by David Bostock - Philosophy of Mathematics 7.1
     A reaction: Since I take language to have far less of a role in thought than is commonly believed, I don't think this idea is absurd. I would say that we don't use language much when we are talking!
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Brouwer regards the application of mathematics to the world as somehow 'wicked' [Brouwer, by Bostock]
     Full Idea: Brouwer regards as somehow 'wicked' the idea that mathematics can be applied to a non-mental subject matter, the physical world, and that it might develop in response to the needs which that application reveals.
     From: report of Luitzen E.J. Brouwer (Mathematics, Science and Language [1928]) by David Bostock - Philosophy of Mathematics 7.1
     A reaction: The idea is that mathematics only concerns creations of the human mind. It presumably has no more application than, say, noughts-and-crosses.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)