Combining Texts

Ideas for 'On the Question of Absolute Undecidability', 'The Barcan Formula and Metaphysics' and 'works'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


5 ideas

6. Mathematics / A. Nature of Mathematics / 1. Mathematics
All of mathematics is properties of the whole numbers [Kronecker]
     Full Idea: All the results of significant mathematical research must ultimately be expressible in the simple forms of properties of whole numbers.
     From: Leopold Kronecker (works [1885], Vol 3/274), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 09.5
     A reaction: I've always liked Kronecker's line, but I'm beginning to realise that his use of the word 'number' is simply out-of-date. Natural numbers have a special status, but not sufficient to support this claim.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
God made the integers, all the rest is the work of man [Kronecker]
     Full Idea: God made the integers, all the rest is the work of man.
     From: Leopold Kronecker (works [1885]), quoted by A.George / D.J.Velleman - Philosophies of Mathematics Intro
     A reaction: This famous remark was first quoted in Kronecker's obituary. A response to Dedekind, it seems. See Idea 10090. Did he really mean that negative numbers were the work of God? We took a long time to spot them.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)