Combining Texts

Ideas for 'On the Question of Absolute Undecidability', 'Logicism, Some Considerations (PhD)' and 'Thinking about Consciousness'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


4 ideas

6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Obtaining numbers by abstraction is impossible - there are too many; only a rule could give them, in order [Benacerraf]
     Full Idea: Not all numbers could possibly have been learned ā la Frege-Russell, because we could not have performed that many distinct acts of abstraction. Somewhere along the line a rule had to come in to enable us to obtain more numbers, in the natural order.
     From: Paul Benacerraf (Logicism, Some Considerations (PhD) [1960], p.165)
     A reaction: Follows on from Idea 13411. I'm not sure how Russell would deal with this, though I am sure his account cannot be swept aside this easily. Nevertheless this seems powerful and convincing, approaching the problem through the epistemology.
We must explain how we know so many numbers, and recognise ones we haven't met before [Benacerraf]
     Full Idea: Both ordinalists and cardinalists, to account for our number words, have to account for the fact that we know so many of them, and that we can 'recognize' numbers which we've neither seen nor heard.
     From: Paul Benacerraf (Logicism, Some Considerations (PhD) [1960], p.166)
     A reaction: This seems an important contraint on any attempt to explain numbers. Benacerraf is an incipient structuralist, and here presses the importance of rules in our grasp of number. Faced with 42,578,645, we perform an act of deconstruction to grasp it.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
If numbers are basically the cardinals (Frege-Russell view) you could know some numbers in isolation [Benacerraf]
     Full Idea: If we accept the Frege-Russell analysis of number (the natural numbers are the cardinals) as basic and correct, one thing which seems to follow is that one could know, say, three, seventeen, and eight, but no other numbers.
     From: Paul Benacerraf (Logicism, Some Considerations (PhD) [1960], p.164)
     A reaction: It seems possible that someone might only know those numbers, as the patterns of members of three neighbouring families (the only place where they apply number). That said, this is good support for the priority of ordinals. See Idea 13412.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]