Combining Texts

Ideas for 'Parmenides', 'Mathematics without Foundations' and 'Rechnungsmethoden (dissertation)'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


7 ideas

6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Quantity is inconceivable without the idea of addition [Frege]
     Full Idea: There is so intimate a connection between the concepts of addition and of quantity that one cannot begin to grasp the latter without the former.
     From: Gottlob Frege (Rechnungsmethoden (dissertation) [1874], p.2), quoted by Michael Dummett - Frege philosophy of mathematics 22 'Quantit'
     A reaction: Frege offers good reasons for making cardinals prior to ordinals, though plenty of people disagree.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
I do not believe mathematics either has or needs 'foundations' [Putnam]
     Full Idea: I do not believe mathematics either has or needs 'foundations'.
     From: Hilary Putnam (Mathematics without Foundations [1967])
     A reaction: Agreed that mathematics can function well without foundations (given that the enterprise got started with no thought for such things), the ontology of the subject still strikes me as a major question, though maybe not for mathematicians.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
It is conceivable that the axioms of arithmetic or propositional logic might be changed [Putnam]
     Full Idea: I believe that under certain circumstances revisions in the axioms of arithmetic, or even of the propositional calculus (e.g. the adoption of a modular logic as a way out of the difficulties in quantum mechanics), is fully conceivable.
     From: Hilary Putnam (Mathematics without Foundations [1967], p.303)
     A reaction: One can change the axioms of a system without necessarily changing the system (by swapping an axiom and a theorem). Especially if platonism is true, since the eternal objects reside calmly above our attempts to axiomatise them!
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
One is, so numbers exist, so endless numbers exist, and each one must partake of being [Plato]
     Full Idea: If one is, there must also necessarily be number - Necessarily - But if there is number, there would be many, and an unlimited multitude of beings. ..So if all partakes of being, each part of number would also partake of it.
     From: Plato (Parmenides [c.364 BCE], 144a)
     A reaction: This seems to commit to numbers having being, then to too many numbers, and hence to too much being - but without backing down and wondering whether numbers had being after all. Aristotle disagreed.
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Geometry appeals to intuition as the source of its axioms [Frege]
     Full Idea: The elements of all geometrical constructions are intuitions, and geometry appeals to intuition as the source of its axioms.
     From: Gottlob Frege (Rechnungsmethoden (dissertation) [1874], Ch.6), quoted by Michael Dummett - Frege philosophy of mathematics
     A reaction: Very early Frege, but he stuck to this view, while firmly rejecting intuition as a source of arithmetic. Frege would have known well that Euclid's assumption about parallels had been challenged.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Maybe mathematics is empirical in that we could try to change it [Putnam]
     Full Idea: Mathematics might be 'empirical' in the sense that one is allowed to try to put alternatives into the field.
     From: Hilary Putnam (Mathematics without Foundations [1967], p.303)
     A reaction: He admits that change is highly unlikely. It take hardcore Millian arithmetic to be only changeable if pebbles start behaving very differently with regard to their quantities, which appears to be almost inconceivable.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Science requires more than consistency of mathematics [Putnam]
     Full Idea: Science demands much more of a mathematical theory than that it should merely be consistent, as the example of the various alternative systems of geometry dramatizes.
     From: Hilary Putnam (Mathematics without Foundations [1967])
     A reaction: Well said. I don't agree with Putnam's Indispensability claims, but if an apparent system of numbers or lines has no application to the world then I don't consider it to be mathematics. It is a new game, like chess.