Combining Texts

Ideas for 'fragments/reports', 'The Art of the Infinite' and 'Logic in Mathematics'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


6 ideas

6. Mathematics / A. Nature of Mathematics / 1. Mathematics
To create order in mathematics we need a full system, guided by patterns of inference [Frege]
     Full Idea: We cannot long remain content with the present fragmentation [of mathematics]. Order can be created only by a system. But to construct a system it is necessary that in any step forward we take we should be aware of the logical inferences involved.
     From: Gottlob Frege (Logic in Mathematics [1914], p.205)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
1 and 0, then add for naturals, subtract for negatives, divide for rationals, take roots for irrationals [Kaplan/Kaplan]
     Full Idea: You have 1 and 0, something and nothing. Adding gives us the naturals. Subtracting brings the negatives into light; dividing, the rationals; only with a new operation, taking of roots, do the irrationals show themselves.
     From: R Kaplan / E Kaplan (The Art of the Infinite [2003], 1 'Mind')
     A reaction: The suggestion is constructivist, I suppose - that it is only operations that produce numbers. They go on to show that complex numbers don't quite fit the pattern.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
The rationals are everywhere - the irrationals are everywhere else [Kaplan/Kaplan]
     Full Idea: The rationals are everywhere - the irrationals are everywhere else.
     From: R Kaplan / E Kaplan (The Art of the Infinite [2003], 1 'Nameless')
     A reaction: Nice. That is, the rationals may be dense (you can always find another one in any gap), but the irrationals are continuous (no gaps).
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
'Commutative' laws say order makes no difference; 'associative' laws say groupings make no difference [Kaplan/Kaplan]
     Full Idea: The 'commutative' laws say the order in which you add or multiply two numbers makes no difference; ...the 'associative' laws declare that regrouping couldn't change a sum or product (e.g. a+(b+c)=(a+b)+c ).
     From: R Kaplan / E Kaplan (The Art of the Infinite [2003], 2 'Tablets')
     A reaction: This seem utterly self-evident, but in more complex systems they can break down, so it is worth being conscious of them.
'Distributive' laws say if you add then multiply, or multiply then add, you get the same result [Kaplan/Kaplan]
     Full Idea: The 'distributive' law says you will get the same result if you first add two numbers, and then multiply them by a third, or first multiply each by the third and then add the results (i.e. a · (b+c) = a · b + a · c ).
     From: R Kaplan / E Kaplan (The Art of the Infinite [2003], 2 'Tablets')
     A reaction: Obviously this will depend on getting the brackets right, to ensure you are indeed doing the same operations both ways.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
If principles are provable, they are theorems; if not, they are axioms [Frege]
     Full Idea: If the law [of induction] can be proved, it will be included amongst the theorems of mathematics; if it cannot, it will be included amongst the axioms.
     From: Gottlob Frege (Logic in Mathematics [1914], p.203)
     A reaction: This links Frege with the traditional Euclidean view of axioms. The question, then, is how do we know them, given that we can't prove them.