Combining Texts

Ideas for 'teaching', 'Axiomatic Theories of Truth' and 'Paradoxes of the Infinite'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


6 ideas

6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
For Pythagoreans 'one' is not a number, but the foundation of numbers [Pythagoras, by Watson]
     Full Idea: For Pythagoreans, one, 1, is not a true number but the 'essence' of number, out of which the number system emerges.
     From: report of Pythagoras (reports [c.530 BCE], Ch.8) by Peter Watson - Ideas Ch.8
     A reaction: I think this is right! Counting and numbers only arise once the concept of individuality and identity have arisen. Counting to one is no more than observing the law of identity. 'Two' is the big adventure.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
A truly infinite quantity does not need to be a variable [Bolzano]
     Full Idea: A truly infinite quantity (for example, the length of a straight line, unbounded in either direction) does not by any means need to be a variable.
     From: Bernard Bolzano (Paradoxes of the Infinite [1846]), quoted by Brian Clegg - Infinity: Quest to Think the Unthinkable §10
     A reaction: This is an important idea, followed up by Cantor, which relegated to the sidelines the view of infinity as simply something that could increase without limit. Personally I like the old view, but there is something mathematically stable about infinity.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
The compactness theorem can prove nonstandard models of PA [Halbach]
     Full Idea: Nonstandard models of Peano arithmetic are models of PA that are not isomorphic to the standard model. Their existence can be established with the compactness theorem or the adequacy theorem of first-order logic.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 8.3)
The global reflection principle seems to express the soundness of Peano Arithmetic [Halbach]
     Full Idea: The global reflection principle ∀x(Sent(x) ∧ Bew[PA](x) → Tx) …seems to be the full statement of the soundness claim for Peano arithmetic, as it expresses that all theorems of Peano arithmetic are true.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 22.1)
     A reaction: That is, an extra principle must be introduced to express the soundness. PA is, of course, not complete.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
To reduce PA to ZF, we represent the non-negative integers with von Neumann ordinals [Halbach]
     Full Idea: For the reduction of Peano Arithmetic to ZF set theory, usually the set of finite von Neumann ordinals is used to represent the non-negative integers.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 6)
     A reaction: Halbach makes it clear that this is just one mode of reduction, relative interpretability.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Set theory was liberated early from types, and recent truth-theories are exploring type-free [Halbach]
     Full Idea: While set theory was liberated much earlier from type restrictions, interest in type-free theories of truth only developed more recently.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 4)
     A reaction: Tarski's theory of truth involves types (or hierarchies).