Combining Texts

Ideas for 'Philosophical Explanations', 'The Principles of Mathematics' and 'Introduction to 'Self-Knowledge''

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


4 ideas

6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Mathematics doesn't care whether its entities exist [Russell]
     Full Idea: Mathematics is throughout indifferent to the question whether its entities exist.
     From: Bertrand Russell (The Principles of Mathematics [1903], §434)
     A reaction: There is an 'if-thenist' attitude in this book, since he is trying to reduce mathematics to logic. Total indifference leaves the problem of why mathematics is applicable to the real world.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Pure mathematics is the class of propositions of the form 'p implies q' [Russell]
     Full Idea: Pure mathematics is the class of all propositions of the form 'p implies q', where p and q are propositions containing one or more variables, the same in the two propositions, and neither p nor q contains any constants except logical constants.
     From: Bertrand Russell (The Principles of Mathematics [1903], §001)
     A reaction: Linnebo calls Russell's view here 'deductive structuralism'. Russell gives (§5) as an example that Euclid is just whatever is deduced from his axioms.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
For 'x is a u' to be meaningful, u must be one range of individuals (or 'type') higher than x [Russell]
     Full Idea: In his 1903 theory of types he distinguished between individuals, ranges of individuals, ranges of ranges of individuals, and so on. Each level was a type, and it was stipulated that for 'x is a u' to be meaningful, u must be one type higher than x.
     From: Bertrand Russell (The Principles of Mathematics [1903], App)
     A reaction: Russell was dissatisfied because this theory could not deal with Cantor's Paradox. Is this the first time in modern philosophy that someone has offered a criterion for whether a proposition is 'meaningful'?
In 'x is a u', x and u must be of different types, so 'x is an x' is generally meaningless [Russell, by Magidor]
     Full Idea: Russell argues that in a statement of the form 'x is a u' (and correspondingly, 'x is a not-u'), 'x must be of different types', and hence that ''x is an x' must in general be meaningless'.
     From: report of Bertrand Russell (The Principles of Mathematics [1903], App B:524) by Ofra Magidor - Category Mistakes 1.2
     A reaction: " 'Word' is a word " comes to mind, but this would be the sort of ascent to a metalanguage (to distinguish the types) which Tarski exploited. It is the simple point that a classification can't be the same as a member of the classification.