Combining Texts

Ideas for 'Thinking About Mathematics', 'A Structural Account of Mathematics' and 'fragments/reports'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


6 ideas

6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Analytic geometry gave space a mathematical structure, which could then have axioms [Chihara]
     Full Idea: With the invention of analytic geometry (by Fermat and then Descartes) physical space could be represented as having a mathematical structure, which could eventually lead to its axiomatization (by Hilbert).
     From: Charles Chihara (A Structural Account of Mathematics [2004], 02.3)
     A reaction: The idea that space might have axioms seems to be pythagoreanism run riot. I wonder if there is some flaw at the heart of Einstein's General Theory because of this?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
We can replace existence of sets with possibility of constructing token sentences [Chihara, by MacBride]
     Full Idea: Chihara's 'constructability theory' is nominalist - mathematics is reducible to a simple theory of types. Instead of talk of sets {x:x is F}, we talk of open sentences Fx defining them. Existence claims become constructability of sentence tokens.
     From: report of Charles Chihara (A Structural Account of Mathematics [2004]) by Fraser MacBride - Review of Chihara's 'Structural Acc of Maths' p.81
     A reaction: This seems to be approaching the problem in a Fregean way, by giving an account of the semantics. Chihara is trying to evade the Quinean idea that assertion is ontological commitment. But has Chihara retreated too far? How does he assert existence?