Combining Texts

Ideas for 'Thinking About Mathematics', 'Frege philosophy of mathematics' and 'Modern Philosophy:introduction and survey'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


6 ideas

6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The identity of a number may be fixed by something outside structure - by counting [Dummett]
     Full Idea: The identity of a mathematical object may sometimes be fixed by its relation to what lies outside the structure to which it belongs. It is more fundamental to '3' that if certain objects are counted, there are three of them.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 5)
     A reaction: This strikes me as Dummett being pushed (by his dislike of the purely abstract picture given by structuralism) back to a rather empiricist and physical view of numbers, though he would totally deny that.
Numbers aren't fixed by position in a structure; it won't tell you whether to start with 0 or 1 [Dummett]
     Full Idea: The number 0 is not differentiated from 1 by its position in a progression, otherwise there would be no difference between starting with 0 and starting with 1. That is enough to show that numbers are not identifiable just as positions in structures.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 5)
     A reaction: This sounds conclusive, but doesn't feel right. If numbers are a structure, then where you 'start' seems unimportant. Where do you 'start' in St Paul's Cathedral? Starting sounds like a constructivist concept for number theory.