Combining Texts

Ideas for 'Thinking About Mathematics', 'The Evolution of Co-Operation' and 'Cardinality, Counting and Equinumerosity'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


24 ideas

6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
The meaning of a number isn't just the numerals leading up to it [Heck]
     Full Idea: My knowing what the number '33' denotes cannot consist in my knowing that it denotes the number of decimal numbers between '1' and '33', because I would know that even if it were in hexadecimal (which I don't know well).
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: Obviously you wouldn't understand '33' if you didn't understand what '33 things' meant.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The number 3 is presumably identical as a natural, an integer, a rational, a real, and complex [Shapiro]
     Full Idea: It is surely wise to identify the positions in the natural numbers structure with their counterparts in the integer, rational, real and complex number structures.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: The point is that this might be denied, since 3, 3/1, 3.00.., and -3*i^2 are all arrived at by different methods of construction. Natural 3 has a predecessor, but real 3 doesn't. I agree, intuitively, with Shapiro. Russell (1919) disagreed.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A basic grasp of cardinal numbers needs an understanding of equinumerosity [Heck]
     Full Idea: An appreciation of the connection between sameness of number and equinumerosity that it reports is essential to even the most primitive grasp of the concept of cardinal number.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 6)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a formal definition of a converging sequence. [Shapiro]
     Full Idea: A sequence a1,a2,... of rational numbers is 'Cauchy' if for each rational number ε>0 there is a natural number N such that for all natural numbers m, n, if m>N and n>N then -ε < am - an < ε.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.2 n4)
     A reaction: The sequence is 'Cauchy' if N exists.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
In counting, numerals are used, not mentioned (as objects that have to correlated) [Heck]
     Full Idea: One need not conceive of the numerals as objects in their own right in order to count. The numerals are not mentioned in counting (as objects to be correlated with baseball players), but are used.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 3)
     A reaction: He observes that when you name the team, you aren't correlating a list of names with the players. I could correlate any old tags with some objects, and you could tell me the cardinality denoted by the last tag. I do ordinals, you do cardinals.
Is counting basically mindless, and independent of the cardinality involved? [Heck]
     Full Idea: I am not denying that counting can be done mindlessly, without making judgments of cardinality along the way. ...But the question is whether counting is, as it were, fundamentally a mindless exercise.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: He says no. It seems to me like going on a journey, where you can forget where you are going and where you have got to so far, but those underlying facts are always there. If you just tag things with unknown foreign numbers, you aren't really counting.
Counting is the assignment of successively larger cardinal numbers to collections [Heck]
     Full Idea: Counting is not mere tagging: it is the successive assignment of cardinal numbers to increasingly large collections of objects.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: That the cardinals are 'successive' seems to mean that they are ordinals as well. If you don't know that 'seven' means a cardinality, as well as 'successor of six', you haven't understood it. Days of the week have successors. Does PA capture cardinality?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / e. Counting by correlation
Understanding 'just as many' needn't involve grasping one-one correspondence [Heck]
     Full Idea: It is far from obvious that knowing what 'just as many' means requires knowing what a one-one correspondence is. The notion of a one-one correspondence is very sophisticated, and it is far from clear that five-year-olds have any grasp of it.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 4)
     A reaction: The point is that children decide 'just as many' by counting each group and arriving at the same numeral, not by matching up. He cites psychological research by Gelman and Galistel.
We can know 'just as many' without the concepts of equinumerosity or numbers [Heck]
     Full Idea: 'Just as many' is independent of the ability to count, and we shouldn't characterise equinumerosity through counting. It is also independent of the concept of number. Enough cookies to go round doesn't need how many cookies.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 4)
     A reaction: [compressed] He talks of children having an 'operational' ability which is independent of these more sophisticated concepts. Interesting. You see how early man could relate 'how many' prior to the development of numbers.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Frege's Theorem explains why the numbers satisfy the Peano axioms [Heck]
     Full Idea: The interest of Frege's Theorem is that it offers us an explanation of the fact that the numbers satisfy the Dedekind-Peano axioms.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 6)
     A reaction: He says 'explaining' does not make it more fundamental, since all proofs explain why their conclusions hold.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Children can use numbers, without a concept of them as countable objects [Heck]
     Full Idea: For a long time my daughter had no understanding of the question of how many numerals or numbers there are between 'one' and 'five'. I think she lacked the concept of numerals as objects which can themselves be counted.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: I can't make any sense of numbers actually being objects, though clearly treating all sorts of things as objects helps thinking (as in 'the victory is all that matters').
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seems to be a non-starter if (as is widely held) logic has no ontology of its own [Shapiro]
     Full Idea: The thesis that principles of arithmetic are derivable from the laws of logic runs against a now common view that logic itself has no ontology. There are no particular logical objects. From this perspective logicism is a non-starter.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 5.1)
     A reaction: This criticism strikes me as utterly devastating. There are two routes to go: prove that logic does have an ontology of objects (what would they be?), or - better - deny that arithmetic contains any 'objects'. Or give up logicism.
We can understand cardinality without the idea of one-one correspondence [Heck]
     Full Idea: One can have a perfectly serviceable concept of cardinality without so much as having the concept of one-one correspondence.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 3)
     A reaction: This is the culmination of a lengthy discussion. It includes citations about the psychology of children's counting. Cardinality needs one group of things, and 1-1 needs two groups.
Equinumerosity is not the same concept as one-one correspondence [Heck]
     Full Idea: Equinumerosity is not the same concept as being in one-one correspondence with.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 6)
     A reaction: He says this is the case, even if they are coextensive, like renate and cordate. You can see that five loaves are equinumerous with five fishes, without doing a one-one matchup.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Term Formalism says mathematics is just about symbols - but real numbers have no names [Shapiro]
     Full Idea: Term Formalism is the view that mathematics is just about characters or symbols - the systems of numerals and other linguistic forms. ...This will cover integers and rational numbers, but what are real numbers supposed to be, if they lack names?
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.1)
     A reaction: Real numbers (such as pi and root-2) have infinite decimal expansions, so we can start naming those. We could also start giving names like 'Harry' to other reals, though it might take a while. OK, I give up.
Game Formalism is just a matter of rules, like chess - but then why is it useful in science? [Shapiro]
     Full Idea: Game Formalism likens mathematics to chess, where the 'content' of mathematics is exhausted by the rules of operating with its language. ...This, however, leaves the problem of why the mathematical games are so useful to the sciences.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.1.2)
     A reaction: This thought pushes us towards structuralism. It could still be a game, but one we learned from observing nature, which plays its own games. Chess is, after all, modelled on warfare.
Deductivism says mathematics is logical consequences of uninterpreted axioms [Shapiro]
     Full Idea: The Deductivist version of formalism (sometimes called 'if-thenism') says that the practice of mathematics consists of determining logical consequences of otherwise uninterpreted axioms.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 6.2)
     A reaction: [Hilbert is the source] More plausible than Term or Game Formalism (qv). It still leaves the question of why it seems applicable to nature, and why those particular axioms might be chosen. In some sense, though, it is obviously right.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Critics resent the way intuitionism cripples mathematics, but it allows new important distinctions [Shapiro]
     Full Idea: Critics commonly complain that the intuitionist restrictions cripple the mathematician. On the other hand, intuitionist mathematics allows for many potentially important distinctions not available in classical mathematics, and is often more subtle.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 7.1)
     A reaction: The main way in which it cripples is its restriction on talk of infinity ('Cantor's heaven'), which was resented by Hilbert. Since high-level infinities are interesting, it would be odd if we were not allowed to discuss them.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualist are just realists or idealist or nominalists, depending on their view of concepts [Shapiro]
     Full Idea: I classify conceptualists according to what they say about properties or concepts. If someone classified properties as existing independent of language I would classify her as a realist in ontology of mathematics. Or they may be idealists or nominalists.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 2.2.1)
     A reaction: In other words, Shapiro wants to eliminate 'conceptualist' as a useful label in philosophy of mathematics. He's probably right. All thought involves concepts, but that doesn't produce a conceptualist theory of, say, football.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Impredicative' definitions refer to the thing being described [Shapiro]
     Full Idea: A definition of a mathematical entity is 'impredicative' if it refers to a collection that contains the defined entity. The definition of 'least upper bound' is impredicative as it refers to upper bounds and characterizes a member of this set.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: The big question is whether mathematics can live with impredicative definitions, or whether they threaten to be viciously circular, and undermine the whole enterprise.