Combining Texts

Ideas for 'Thinking About Mathematics', 'On Husserl' and 'On the Introduction of Transfinite Numbers'

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


7 ideas

6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Categories are the best foundation for mathematics [Shapiro]
     Full Idea: There is a dedicated contingent who hold that the category of 'categories' is the proper foundation for mathematics.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.3 n7)
     A reaction: He cites Lawvere (1966) and McLarty (1993), the latter presenting the view as a form of structuralism. I would say that the concept of a category will need further explication, and probably reduce to either sets or relations or properties.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Two definitions of 3 in terms of sets disagree over whether 1 is a member of 3 [Shapiro]
     Full Idea: Zermelo said that for each number n, its successor is the singleton of n, so 3 is {{{null}}}, and 1 is not a member of 3. Von Neumann said each number n is the set of numbers less than n, so 3 is {null,{null},{null,{null}}}, and 1 is a member of 3.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.2)
     A reaction: See Idea 645 - Zermelo could save Plato from the criticisms of Aristotle! These two accounts are cited by opponents of the set-theoretical account of numbers, because it seems impossible to arbitrate between them.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / g. Von Neumann numbers
Each Von Neumann ordinal number is the set of its predecessors [Neumann, by Lavine]
     Full Idea: Each Von Neumann ordinal number is the set of its predecessors. ...He had shown how to introduce ordinal numbers as sets, making it possible to use them without leaving the domain of sets.
     From: report of John von Neumann (On the Introduction of Transfinite Numbers [1923]) by Shaughan Lavine - Understanding the Infinite V.3
For Von Neumann the successor of n is n U {n} (rather than {n}) [Neumann, by Maddy]
     Full Idea: For Von Neumann the successor of n is n U {n} (rather than Zermelo's successor, which is {n}).
     From: report of John von Neumann (On the Introduction of Transfinite Numbers [1923]) by Penelope Maddy - Naturalism in Mathematics I.2 n8
Von Neumann numbers are preferred, because they continue into the transfinite [Maddy on Neumann]
     Full Idea: Von Neumann's version of the natural numbers is in fact preferred because it carries over directly to the transfinite ordinals.
     From: comment on John von Neumann (On the Introduction of Transfinite Numbers [1923]) by Penelope Maddy - Naturalism in Mathematics I.2 n9
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Numbers do not exist independently; the essence of a number is its relations to other numbers [Shapiro]
     Full Idea: The structuralist vigorously rejects any sort of ontological independence among the natural numbers; the essence of a natural number is its relations to other natural numbers.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: This seems to place the emphasis on ordinals (what order?) rather than on cardinality (how many?). I am strongly inclined to think that this is the correct view, though you can't really have relations if there is nothing to relate.
A 'system' is related objects; a 'pattern' or 'structure' abstracts the pure relations from them [Shapiro]
     Full Idea: A 'system' is a collection of objects with certain relations among them; a 'pattern' or 'structure' is the abstract form of a system, highlighting the interrelationships and ignoring any features they do not affect how they relate to other objects.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 10.1)
     A reaction: Note that 'ignoring' features is a psychological account of abstraction, which (thanks to Frege and Geach) is supposed to be taboo - but which I suspect is actually indispensable in any proper account of thought and concepts.