Combining Texts

Ideas for 'Axiomatic Theories of Truth', 'The Logic of Decision' and 'Intro to 'The Reason's Proper Study''

unexpand these ideas     |    start again     |     choose another area for these texts

display all the ideas for this combination of texts


6 ideas

6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
The compactness theorem can prove nonstandard models of PA [Halbach]
     Full Idea: Nonstandard models of Peano arithmetic are models of PA that are not isomorphic to the standard model. Their existence can be established with the compactness theorem or the adequacy theorem of first-order logic.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 8.3)
The global reflection principle seems to express the soundness of Peano Arithmetic [Halbach]
     Full Idea: The global reflection principle ∀x(Sent(x) ∧ Bew[PA](x) → Tx) …seems to be the full statement of the soundness claim for Peano arithmetic, as it expresses that all theorems of Peano arithmetic are true.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 22.1)
     A reaction: That is, an extra principle must be introduced to express the soundness. PA is, of course, not complete.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
The incompletability of formal arithmetic reveals that logic also cannot be completely characterized [Hale/Wright]
     Full Idea: The incompletability of formal arithmetic reveals, not arithmetical truths which are not truths of logic, but that logical truth likewise defies complete deductive characterization. ...Gödel's result has no specific bearing on the logicist project.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], §2 n5)
     A reaction: This is the key defence against the claim that Gödel's First Theorem demolished logicism.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
To reduce PA to ZF, we represent the non-negative integers with von Neumann ordinals [Halbach]
     Full Idea: For the reduction of Peano Arithmetic to ZF set theory, usually the set of finite von Neumann ordinals is used to represent the non-negative integers.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 6)
     A reaction: Halbach makes it clear that this is just one mode of reduction, relative interpretability.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If structures are relative, this undermines truth-value and objectivity [Hale/Wright]
     Full Idea: The relativization of ontology to theory in structuralism can't avoid carrying with it a relativization of truth-value, which would compromise the objectivity which structuralists wish to claim for mathematics.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], 3.2 n26)
     A reaction: This is the attraction of structures which grow out of the physical world, where truth-value is presumably not in dispute.
The structural view of numbers doesn't fit their usage outside arithmetical contexts [Hale/Wright]
     Full Idea: It is not clear how the view that natural numbers are purely intra-structural 'objects' can be squared with the widespread use of numerals outside purely arithmetical contexts.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], 3.2 n26)
     A reaction: I don't understand this objection. If they refer to quantity, they are implicitly cardinal. If they name things in a sequence they are implicitly ordinal. All users of numbers have a grasp of the basic structure.